律证论坛
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Quantum Field Theory II

3页/共4 上一页  1, 2, 3, 4  下一步

向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:22

理想 (环论)[编辑]





[ltr]理想(Ideal)是一个抽象代数中的概念。[/ltr]


[ltr]目录
  [隐藏[/ltr]




[ltr]

定义[编辑]
(R,+,·),易知(R, +)是阿贝尔群。R的子集I称为R的一个右理想,若I满足:[/ltr]


  1. (I, +) 构成 (R, +) 的子群。
  2. ∀i ∈ I,r ∈ R,i·r ∈ I。


[ltr]
类似地,I称为R的左理想,若以下条件成立:[/ltr]


  1. (I, +) 构成 (R, +) 的子群。
  2. ∀i ∈ I,r ∈ R,r·i ∈ I。


[ltr]
若I既是R的右理想,也是R的左理想,则称I为R的双边理想,简称R上的理想
示例[编辑][/ltr]


  • 整数环的理想:整数环Z只有形如nZ的理想。


[ltr]
一些结论[编辑][/ltr]


  • 在环中,(左或右)理想的交和并仍然是(左或右)理想。



  • 对于R的两个理想A,B,记Quantum Field Theory II - 页 3 0eb23df7280cb65848b11661c12a0915。按定义不难证明:




  • (1) 如果A是R的左理想,则AB是R的左理想。
  • (2) 如果B是R的右理想,则AB是R的右理想。
  • (3) 如果A是R的左理想,B是R的右理想,则AB是R的双边理想。




  • R的子集I是R的理想,若I满足:

    1. ∀a,b ∈ I,a - b∈I。
    2. ∀a ∈ I, r ∈ R, 则a·r∈ I。





  • 交换环的理想:交换环的理想都是双边理想。



  • 除环的理想:除环中的(左或右)理想只有平凡(左或右)理想。


[ltr]
生成理想[编辑]
如果A环R的一个非空子集,令<A>=RA+AR+RAR+ZA,则<A>是环R的理想,这个理想称为R中由A生成的理想, A称为生成元集。同群的生成子群类似,<A>是R中所有包含A的理想的交,因此是R中包含A的最小理想。下面是生成理想的几种特殊情况:[/ltr]


  • (1) 当是交换环时,<A>=RA+ZA




  • (2) 当是有单位元1的环时,<A>=RAR




  • (3) 当是有单位元交换环时,<A>=RA


[ltr]

主理想[编辑]
设集合A = {a1,a2,...,an},则记<A> = <a1,a2,...,an>,称Quantum Field Theory II - 页 3 907974e7b3254c5a6fd2d78489e3c99d是有限生成理想.特别当Quantum Field Theory II - 页 3 A4ca252da20210567d98ce281414d62a是单元素集时,称Quantum Field Theory II - 页 3 6d31e80692df1ebf0776aa9c019e8a8f为环R的主理想。注意Quantum Field Theory II - 页 3 D39ab0be07d6d4c9c697caeedea07b17作为生成元一般不是唯一的,如Quantum Field Theory II - 页 3 422618c2a0825768011f61be7df4b763Quantum Field Theory II - 页 3 68599139e94cdaa15fb3d01142bf8496的一般形式是:
Quantum Field Theory II - 页 3 040729cacee306b0390f97d9f0d7d36d[/ltr]


  • 性质:Quantum Field Theory II - 页 3 6d43459880c1758e15749b5fb64364c2


[ltr]
几类特殊环中的主理想:[/ltr]


  • (1) 如果是交换环,则Quantum Field Theory II - 页 3 Ac6fb7300df67d68a1e0f08f8f8316e8




  • (2) 如果是有单位元的环,则Quantum Field Theory II - 页 3 4770f41f2a47155c77947f2059101c3f




  • (3) 如果是有单位元的交换环,则Quantum Field Theory II - 页 3 57f1fdd918f5ea9861bf6a68ab4df09c


[ltr]

  
相关概念和结论[编辑][/ltr]


  • 真理想:若I是环R的理想,且I是R的真子集,I称为R的真理想
  • 极大理想: 环R的一个真理想I被称为R的极大理想,若不存在其他真理想J,使得I是J的真子集

    • 极大左理想:设 I 是环R的左理想,若I ≠ R并且在 I 与R之间不存在真的左理想,则称 I 是环R的一个极大左理想。极大左理想与极大理想之间有如下关系:

      1. 如果 I 是极大左理想,又是双边理想,则 I 是极大理想。
      2. 极大理想未必是极大左理想。


    • 单环:在幺环中,若零理想是其极大理想,称该环为单环

      • 除环是单环,其零理想是极大理想。
      • 域是单环。


    • 在整数环Z中,由p生成的主理想是极大理想的充分必要条件是:p是素数。
    • 设R是有单位元1的交换环。理想 I 是R的极大理想的充分且必要条件是:商环R / I是域。
    • 设I是环R的左理想,则I是R的极大左理想的充分必要条件是对R的任意一个不含在 I 中的左理想J都有 I+J=R。





  • 素理想:环 R 的真理想 I 被称为素理想,若∀R上的理想A,B,有AB ⊆ I ⇒ A ⊆ I 或 B ⊆ I。
  • 素环:若环R的零理想是素理想,则称R是素环(或质环)。

    • 无零因子环是素环。
    • 在交换环 R 中,真理想 I 是素理想的充要条件是: R / I 是素环。


  • 准素理想:环R的真理想I。若∀R上的理想P,有P2 ⊆ I ⇒ P ⊆ I,称 I 是 R的准素理想

    • 准素理想是一类比素理想相对较弱的理想。素理想是准素理想,反之不成立。




[ltr]
参见[编辑][/ltr]






准素理想[编辑]



[ltr]在交换代数中,一个交换环 Quantum Field Theory II - 页 3 E1e1d3d40573127e9ee0480caf1283d6 里的理想 Quantum Field Theory II - 页 3 F09564c9ca56850d4cd6b3319e541aee 若满足 Quantum Field Theory II - 页 3 E71c7b1288befd8b4eccd33fdd5ee146,而且其中每个零除数都是幂零的,则称之为准素理想。另一种等价的刻画是:对任意 Quantum Field Theory II - 页 3 4ec17a1337d97d20d834dec86f73fb2b,若 Quantum Field Theory II - 页 3 21deefb8c22c3586546c9000f8117763,则或有 Quantum Field Theory II - 页 3 Dda79fa98f8ba69e3ee6283bd26d95be,或 Quantum Field Theory II - 页 3 Cd744053712ba4b012e223fe8c2283aa
若设 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 为 Quantum Field Theory II - 页 3 F09564c9ca56850d4cd6b3319e541aee 的根(必为素理想),则也称 Quantum Field Theory II - 页 3 F09564c9ca56850d4cd6b3319e541aee 为P-准素理想
任何素理想都是准素理想。在整数环 Quantum Field Theory II - 页 3 812b3f5a051a22b060fbc64deea076db 中,准素理想对应到素数的幂。
一般而言,对任何 Quantum Field Theory II - 页 3 E1e1d3d40573127e9ee0480caf1283d6- Quantum Field Theory II - 页 3 69691c7bdcc3ce6d5d8a1361f22d04ac,定义
Quantum Field Theory II - 页 3 14fbaa8e459d6ecdaffd585cb5c9fd76
其中 Quantum Field Theory II - 页 3 A07d52b9df30f7a50ed1be785c61531b
对于子模 Quantum Field Theory II - 页 3 30f8b4451a5f8b313ef4e541ebae9009,若 Quantum Field Theory II - 页 3 17cb93dd3a399a62854e5fd9b64b1fc8 只有一个元素 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa,则称 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 为 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa-准素子模。取 Quantum Field Theory II - 页 3 4fc85fb607ec9c01338975cd17efedf8,便回到先前的定义。
参见[size=13][编辑]

[/ltr][/size]
[size][ltr]
文献[编辑]
[/ltr][/size]
[size][ltr]
本条目含有来自PlanetMathPrimary ideal》的材料,版权遵守乃遵守知识共享协议:署名-相同方式共享协议。[/ltr][/size]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:29

群作用[编辑]



Quantum Field Theory II - 页 3 220px-Group_action_on_equilateral_***.svg
Quantum Field Theory II - 页 3 Magnify-clip
给定一个等边三角形,通过把所有顶点映射到另一个顶点,绕三角形中心逆时针 120°旋转“作用”在这个三角形的顶点的集合上。
[size][ltr]
数学上,对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:的每个元素作为一个双射(或者对称作用)作用在某个集合上。在这个情况下,群称为置换群(特别是在群有限或者不是线性空间时)或者变换群(特别是当这个集合是线性空间而群作为线性变换作用在集合上时)。一个群G的置换表示是群作为一个集合的置换群的群表示(通常该集合有限),并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
定义[编辑]
Quantum Field Theory II - 页 3 883a7fc9929827763520db2086198716为一个Quantum Field Theory II - 页 3 66d62a5ef1c2c6bfe3abf73f63e970e3为一个集合,则Quantum Field Theory II - 页 3 883a7fc9929827763520db2086198716Quantum Field Theory II - 页 3 66d62a5ef1c2c6bfe3abf73f63e970e3上的一个(左) 群作用是一个二元函数
Quantum Field Theory II - 页 3 16ae98d03d2eae939e3f273a84239882
(其中Quantum Field Theory II - 页 3 97475bdf79bdbecfee2e6b6bb8000313Quantum Field Theory II - 页 3 340d35d698da8eb7f00c6f518fca1e7d的像写作Quantum Field Theory II - 页 3 Af20b8e1a8cb1fc15485810596b7da33),满足如下两条公理:
[/ltr][/size]

  1. Quantum Field Theory II - 页 3 4ac414f99deffe5bdb977a42379241a0 对于所有 Quantum Field Theory II - 页 3 226e1c0d1e660dfaf5ce6b7588482c87 和 Quantum Field Theory II - 页 3 340d35d698da8eb7f00c6f518fca1e7d成立
  2. Quantum Field Theory II - 页 3 A5f71df16339e7c14ba9175ff6a01edf对于每个Quantum Field Theory II - 页 3 340d35d698da8eb7f00c6f518fca1e7d成立 (Quantum Field Theory II - 页 3 E1671797c52e15f763380b45e841ec32代表Quantum Field Theory II - 页 3 883a7fc9929827763520db2086198716幺元)

[size][ltr]
从这两条公理,可以得出对于每个Quantum Field Theory II - 页 3 97475bdf79bdbecfee2e6b6bb8000313,映射Quantum Field Theory II - 页 3 340d35d698da8eb7f00c6f518fca1e7dQuantum Field Theory II - 页 3 Af20b8e1a8cb1fc15485810596b7da33的函数是一个双射,从Quantum Field Theory II - 页 3 66d62a5ef1c2c6bfe3abf73f63e970e3映射到Quantum Field Theory II - 页 3 66d62a5ef1c2c6bfe3abf73f63e970e3。因此,也可以将Quantum Field Theory II - 页 3 883a7fc9929827763520db2086198716Quantum Field Theory II - 页 3 66d62a5ef1c2c6bfe3abf73f63e970e3上的群作用定义为从Quantum Field Theory II - 页 3 883a7fc9929827763520db2086198716对称群Quantum Field Theory II - 页 3 28fe490185106f8b8c27e162e6c3a8a8群同态
若群作用Quantum Field Theory II - 页 3 16ae98d03d2eae939e3f273a84239882给定,我们称“G作用于集合X”或者X是一个G-集合
完全一样地,可以定义一个GX上的右群作用为函数Quantum Field Theory II - 页 3 729760167f8da24f49b15ac9f400ffb9,满足以下公理:
[/ltr][/size]

  1. Quantum Field Theory II - 页 3 4fb9bc4071ae2114f9c9fbc045fa7c60
  2. Quantum Field Theory II - 页 3 A5776b302ba95e0f5153ca5b200d2773

[size][ltr]
注意左和右作用的区别仅在于象gh这样的积在x上作用的次序。对于左作用h先作用然后是g,而对于右作用g先作用然后是h。从一个右作用可以构造一个左作用,只要和群上的逆操作复合就可以了。如果r为一右作用,则
Quantum Field Theory II - 页 3 1f2fbe9b57cd5f1cdea53be06f3721de
是一左作用,因为
Quantum Field Theory II - 页 3 26ebbc1d82885c79632997696ab44693

Quantum Field Theory II - 页 3 570ccc7d2958df9a2fd7c9cc751a0a41
所以在这里,我们只考虑左群作用,因为右作用可以相应推理。
[/ltr][/size]
分类




广义函数[编辑]



Quantum Field Theory II - 页 3 25px-Confusion_grey.svg
提示:本条目的主题不是通用函数
[size][ltr]
数学上,广义函数是将函数的概念一般化得到的对象。得到承认的理论不止一种。广义函数在使得不连续函数表现得更像光滑函数的方面很有用,并且(在极限情况下)可以表述象点电荷这类的物理现象。它们广泛应用于物理工程领域。
有些方法的一个共同之处在于它们是基于日常数值函数的算子方面的。其早期历史和算子微积分的一些思想有联系,而更为现代的发展和佐藤干夫称为代数分析的特定方向的一些思想有密切关联。偏微分方程群表示理论的技术要求曾对该主题有重要影响。
参看[编辑]
[/ltr][/size]
[size][ltr]



格 (数学)[编辑]



[/ltr][/size]
本文介绍的是数学中的格。关于与“格 (数学)”名称相近的条目,详见“”。

Quantum Field Theory II - 页 3 220px-Lattice_of_partitions_of_an_order_4_set.svg
Quantum Field Theory II - 页 3 Magnify-clip
术语(lattice)来源于描述这种次序的哈斯图的形状。
[size][ltr][size][ltr]
数学中,是其非空有限子集都有一个上确界(叫)和一个下确界(叫)的偏序集合(poset)。格也可以特征化为满足特定公理恒等式代数结构。因为两个定义是等价的,格理论从序理论泛代数二者提取内容。半格包括了格,依次包括海廷代数布尔代数。这些"格样式"的结构都允许序理论和抽象代数的描述。

[/ltr][/size][/ltr][/size]
[ltr]目录
  [隐藏[/ltr]


[size][ltr][size][ltr]

序理论定义[编辑]
考虑任意一个偏序集合(L,≤),如果对集合L中的任意元素a,b,使得a,b在L中存在一个最大下界,和最小上界,则(L,≤)是一个格。
这里对于取a,b的最大下界的操作用 Quantum Field Theory II - 页 3 2087fb4763a6e238d1917e47e2a5aa29 表示;
对于取a,b的最小上界操作用 Quantum Field Theory II - 页 3 50ddb475ce61684d9dace1f3ed6cc135 表示。

有界格有一个最大元素和一个最小元素,按惯例分别指示为 1 和 0(也叫做)。任何格都可以通过增加一个最大元素和最小元素而转换成有界格。
使用容易的归纳论证,你可以演绎出任何格的所有非空有限子集的上确界(并)和下确界(交)的存在。一个很重要的格的种类是完全格。一个格是完全的,如果它的所有子集都有一个交和一个并,这对比于上述格的定义,这里只要求所有非空有限子集的交和并的存在。
抽象代数定义[编辑]
另一种定义格的方式是将格定义为一种代数结构。一个是一个代数结构 Quantum Field Theory II - 页 3 7d58e7c9f9ca766311cf728f5f37b809,其中 Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e 和 Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a 是定义在集合 Quantum Field Theory II - 页 3 D20caec3b48a1eef164cb4ca81ba2587 上的二元运算,且对于所有的 Quantum Field Theory II - 页 3 C4e4734c1a589415631a80ecddd179fe 满足:

[/ltr][/size][/ltr][/size]
交换律Quantum Field Theory II - 页 3 Fd600ea706010a7473ab646da703aca7Quantum Field Theory II - 页 3 D2d98c8d4b326525d24ffaf4fb9b5217
结合律Quantum Field Theory II - 页 3 C6a5bdc30f373b3b49e909e5a04f0ff5Quantum Field Theory II - 页 3 D2f855eaa361fcabcf4b4396cf1fb8ab
吸收律Quantum Field Theory II - 页 3 A311b5c5278a179848060a25d36faedeQuantum Field Theory II - 页 3 Cd8a0b9e59e43ccda2854c74f83302e3
[size][ltr][size][ltr]

从上述三个公理恒等式可以得出重要的:

[/ltr][/size][/ltr][/size]
幂等律Quantum Field Theory II - 页 3 2319885fdd2a690193c36a0622a68627Quantum Field Theory II - 页 3 9e419fed0c8e079c49248c2d7a6bd3d6
[size][ltr][size][ltr]

这些公理断言了 (L,Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e) 和 (L,Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a) 都是半格。吸收律是唯一交和并都出现了的公理,把格同一对半格区别开来并确保这两个半格正确的交互。特别是,每个半格都是另一个半格的对偶。“有界格”要求交和并都有一个零(neutral)元素,分别习惯叫做 1 和 0。参见半格条目。
格与广群家族有一些联系。因为交和并都符合交换律和结合律。格可以看作由有相同的承载者的两个交换半群组成的。如果格是有界的,这些半群也是交换幺半群吸收律是特定于格理论的唯一定义恒等式。
L 闭包于交和并之下,通过归纳,蕴涵了 L 的任何有限子集的交和并的存在性,有着一个例外:空集的交和并分别是最大元素和最小元素。所以格只在它是有界的条件下包含所有有限(包含空)交和并。为此有些作者定义格的时候要求 0 和 1 是 L 的成员。而以这种方式定义格不损失一般性,因为任何格都可以被嵌入一个有界格中,这里不接受这种定义。
格的代数解释在泛代数中扮演根本性角色。
两个定义的等价性[编辑]
格的代数定义蕴涵了序理论的定义,反之亦然。
明显的,序理论的格引发了两个二元运算 Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e 和 Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a。容易看出这些运算使 (LQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3eQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a) 变成代数意义上的格。反之亦真:考虑代数定义的格 (MQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3eQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a)。现在定义在 M 上的偏序 ≤ 如下,对于 M 中的元素 x 和 y
x ≤ y 当且仅当 x = xQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532ay
或等价的
x ≤ y 当且仅当 y = xQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3ey
吸收律确保了两个定义实际上是等价的。你现在可以检查以这种方式介入的关系 ≤ 定义了在其中二元交和并是通过最初运算 Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e 和 Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a 而给出的一个偏序。反过来,由得出自上述序理论公式的代数定义的格 (LQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3eQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a) 引发的次序一致于 L 的最初次序。
因为格的两个定义是等价的,你可以随意调用任何定义的适合你用的方面。
例子[编辑]
[/ltr][/size][/ltr][/size]

  • 对于任何集合 AA 的所有子集的搜集(叫做 A 的幂集)可以通过子集包含的次序获得一个以 A 自身和空集为上下界的格。集合的交集并集分别解释为交(meet)和并(join)。
  • 对于任何集合 AA 的所有有限子集的搜集,通过包含次序也是格,并且将是有界的当且仅当 A 是有限的。
  • 自然数(包括 0)在“极小值”(min)和“极大值”(max)运算下,按照通常次序形成格。0 是底,没有顶。
  • 自然数的笛卡尔平方,按有随后定义的 ≤ 排序是格,(a,b) ≤ (c,d) ↔ (a ≤c) & (b ≤ d)。(0,0) 是底;没有顶。
  • 正整数在采用最大公约数最小公倍数运算之下,用整除作为次序关系也形成一个格: a ≤ b 如果 a 整除 b。底是 1;没有顶。
  • 任何完全格都是(非常特殊的)有界格。这个类别引出了大量实际例子。

[size][ltr][size][ltr]
格的态射[编辑]
在两个格之间的适当的态射概念可以轻易的同上述代数定义得出。给定两个格 (LQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3eQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a) 和 (MQuantum Field Theory II - 页 3 432c1df69e11aba7c5c5070e7578609fQuantum Field Theory II - 页 3 E78f632038354aae583f795a73d4e6b8),格的同态是一个函数 f : L → M 使得
f(xQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3ey) = f(xQuantum Field Theory II - 页 3 432c1df69e11aba7c5c5070e7578609f f(y),f(xQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532ay) = f(xQuantum Field Theory II - 页 3 E78f632038354aae583f795a73d4e6b8 f(y)。
所以 f 是两个底层半格同态。当考虑带有更多结构的格的时候,这个态射也应当注意这个额外结构。所以在两个有界格 L 和 M 之间的态射 f 还有下列性质:
f(0L) = 0M ,f(1L) = 1M 。
在序理论公式中,这些条件只声称格的同态是保持二元交和并的一个函数。对于有界格,最小和最大元素的保持只是空集的并和交的保持。
格的任何同态必然关于相关的次序关系是单调的;参见极限的保持。反过来当然不是真的:单调性决不蕴涵要求的保持性质。
假定同构作为可逆态射的标准定义,格的同构就是双射格同态。格和它们的态射形成了一个范畴
子格[编辑]
格 L 的子格是 L 的非空子集,它是带有同 L 一样的交和并运算的格。就是说,如果 L 是一个格,而 MQuantum Field Theory II - 页 3 E4e9a7d104e20a897bd62397bc584896 是 L 的子集使得对于 M 中的所有元素对ab 有 aQuantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532ab 和 aQuantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3eb 在 M 中,则 M 是 L 的子格。[1]
格 L 的子格 M 是 L 的凸子格,如果 x ≤ z ≤ y 和 xy 在 M 中蕴涵了 z 属于M,对于在 L 中的所有元素 x, y, z
对偶原理[编辑]
Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7是含有格中的元素以及符号Quantum Field Theory II - 页 3 0d5489a438919e5588c34a3b4d2b48fb的逻辑命题,令Quantum Field Theory II - 页 3 04f5f57d53e9bffe95e1969a780328c1是将Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7中的Quantum Field Theory II - 页 3 49dc1443f33cf63082d6e193dd2af78f替换为Quantum Field Theory II - 页 3 8fbe2a506fe3db0835548e1b648ec977,将Quantum Field Theory II - 页 3 8fbe2a506fe3db0835548e1b648ec977替换为Quantum Field Theory II - 页 3 49dc1443f33cf63082d6e193dd2af78f,将Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e替换为Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a,将Quantum Field Theory II - 页 3 1ba4f06f68614e5da79a8ebd378d532a替换为Quantum Field Theory II - 页 3 727ea4c8c49862411edae46adf506e3e后所得到的命题。则称Quantum Field Theory II - 页 3 04f5f57d53e9bffe95e1969a780328c1Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7对偶命题
Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7是含有格中的元素以及符号Quantum Field Theory II - 页 3 0d5489a438919e5588c34a3b4d2b48fb的逻辑命题,若Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7对于一切格为真,则Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7的对偶命题Quantum Field Theory II - 页 3 04f5f57d53e9bffe95e1969a780328c1也对于一切格为真。
引用[编辑]
可在线免费获得的专著:
[/ltr][/size][/ltr][/size]


[size][ltr][size][ltr]
Elementary texts recommended for those with limited mathematical maturity:
[/ltr][/size][/ltr][/size]

  • Donnellan, Thomas, 1968. Lattice Theory. Pergamon.
  • Grätzer, G., 1971. Lattice Theory: First concepts and distributive lattices. W. H. Freeman.

[size][ltr][size][ltr]
The standard contemporary introductory text:
[/ltr][/size][/ltr][/size]

  • Davey, B.A., and H. A. Priestley, 2002. Introduction to Lattices and Order. Cambridge University Press.

[size][ltr][size][ltr]
The classic advanced monograph:
[/ltr][/size][/ltr][/size]

  • Garrett Birkhoff,1967. Lattice Theory, 3rd ed. Vol. 25 of American Mathematical Society Colloquium Publications. American Mathematical Society.

[size][ltr][size][ltr]
Free lattices are discussed in the following title, not primarily devoted to lattice theory:
[/ltr][/size][/ltr][/size]

  • Johnstone, P.T., 1982. Stone spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press.

[size][ltr][size][ltr]
The standard textbook on free lattices:
[/ltr][/size][/ltr][/size]

  • R. Freese, J. Jezek, and J. B. Nation, 1985. "Free Lattices". Mathematical Surveys and Monographs Volume: 42, American Mathematical Association.

[size][ltr][size][ltr]
注解[编辑]
[/ltr][/size][/ltr][/size]

  1. ^ Burris, Stanley N., and H.P. Sankappanavar, H. P., 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2.


[size][ltr][size][ltr]
参见[编辑]
[/ltr][/size][/ltr][/size]

[size][ltr][size]
分类
[/size][/ltr][/size]


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:35

域 (数学)[编辑]





[ltr]在抽象代数中,(Field)是一种可进行(除了除以零之外)运算的代数结构的概念是数域以及四则运算的推广。
域是的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。同时,在现代的定义中,域中的元素关于乘法要是可交换的。简单来说,域是乘法可交换的除环。乘法非交换的除环则称为(Körper, corps),或者反称域(skew field)。在比较旧的定义中,除环被称为“域”,而现代意义上的域被称为“交换域”。[/ltr]



[ltr]目录
  [隐藏[/ltr]




[ltr]

定义[编辑]
定义 1[编辑]
域是交换性除环
定义 2[编辑]
域是一种交换环 (F, +, *),当中加法单位元(0)不等于乘法单位元(1),且所有非零元素有乘法逆元。
定义 3[编辑]
域明确的满足如下性质:
在加法和乘法上封闭 对所有属于F的Quantum Field Theory II - 页 3 B345e1dc09f20fdefdea469f09167892Quantum Field Theory II - 页 3 65c884f742c8591808a121a828bc09f8Quantum Field Theory II - 页 3 5d74a67f6a0cc925b0e4d69146fc57a4属于F(另一种说法:加法和乘法是F上的二元运算)。加法和乘法符合结合律 对所有属于F的Quantum Field Theory II - 页 3 A44c56c8177e32d3613988f4dba7962eQuantum Field Theory II - 页 3 24458a9428d21eba1595d844e721db6bQuantum Field Theory II - 页 3 Ec4a92075608323d74e736f12ce0c386加法和乘法符合交换律 对所有属于F的Quantum Field Theory II - 页 3 2daa2e159899452ff433938173c2355aQuantum Field Theory II - 页 3 8a30c4114e6a0a93bfae199148d73973Quantum Field Theory II - 页 3 902a962f5557bc5457af366545b326a1符合乘法对加法的分配律 对所有属于F的Quantum Field Theory II - 页 3 A44c56c8177e32d3613988f4dba7962eQuantum Field Theory II - 页 3 28ad9577982d47f7e0b4251f9f4e96b6存在加法单位 在F中有元素0,使得所有属于F的Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661Quantum Field Theory II - 页 3 54cf2a31850057eccfa73cdcd6f2f066存在乘法单位 在F中有不同于0的元素1,使得所有属于F的Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661Quantum Field Theory II - 页 3 Ebb4c0b14fd6d00ac17788ad32bbad6f存在加法逆元 对所有属于F的Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661,存在Quantum Field Theory II - 页 3 37caf0ee262229a9ddc60877eec6883f使得Quantum Field Theory II - 页 3 968b92bfe41bc31e2ee504f61217f5b3存在乘法逆元 对所有Quantum Field Theory II - 页 3 Df44347863ac17dc898a13f44f681d01,存在元素Quantum Field Theory II - 页 3 D049a2650853ed31f8259b80b4550ae7使得Quantum Field Theory II - 页 3 Ba8df3881020bec43443b63eff8e637f
其中0 ≠ 1 的要求排除了没有什么意义的只由一个元素组成的域。
由以上性质可以得出一些最基本的推论:
−(a * b) = (−a) * b = a * (−b)a * 0 = 0如果 a * b = 0 ,则要么 a = 0 ,要么 b = 0
例子[编辑][/ltr]


  • 常见的数域都是域。比如说,全体复数的集合Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71对于加法和乘法构成一个域。全体有理数的集合Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f也是一个域,它是Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71子域,并且不包含更小的子域了。



  • 代数数域: 代数数域是有理数域Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f有限扩域,也就是说代数数域是Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f上的有限维向量空间。代数数域都同构于Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71的子域,并且这个同构保持Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f不变,即这个同构把每个有理数都映射到它自身。代数数域是代数数论研究的对象。



  • 代数数构成的域:所有的代数数的集合对于加法和乘法构成一个域,记作Quantum Field Theory II - 页 3 98559038e2fdca66d09359e9ac98992bQuantum Field Theory II - 页 3 98559038e2fdca66d09359e9ac98992b是有理数域Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f的代数闭包(见下)。Quantum Field Theory II - 页 3 98559038e2fdca66d09359e9ac98992b是特征为零的代数封闭的域的一个例子。



  • 全体实数的集合Quantum Field Theory II - 页 3 69a45f1e602cd2b2c2e67e41811fd226对于加法和乘法构成一个域。实数域是复数域Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71的子域,也是一个有序域。后者使得实数域上能够建立起微积分理论。



  • 所有的实代数数的集合也构成一个域,它是Quantum Field Theory II - 页 3 69a45f1e602cd2b2c2e67e41811fd226的一个子域。



  • 任意一个有限域的元素个数是一个素数 q 的乘方,一般记作 Fq ,就是所谓的伽罗瓦域。任意一个元素个数是素数 q 的域都同构于 Z/pZ = {0, 1, ..., p − 1} 。令 p = 2, 就得到最小的域:F2 。F2 只含有两个元素 0 和 1运算法则如下:


[ltr]
0 1 0 1
0 0 1 0 0 0
1 1 0 1 0 1[/ltr]


  • 设 E 和 F 是两个域, E 是 F 的子域,则 F 是 E 的 扩域。设 x 是 F 中的一个元素,则存在着一个最小的同时包含 E 和 x 的 F 的子域,记作 E(x), E(x)称作 E 在 F 中关于 x 的单扩张。比如说,复数域Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71就是实数域Quantum Field Theory II - 页 3 69a45f1e602cd2b2c2e67e41811fd226Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71中关于 虚数单位 i 的单扩张。



  • 每一个有乘法幺元的环 R 都对应着一个包含它的域,称为它的分式域,记作 K(R)。分式域的具体构造方法是定义类似于最简分数的等价类,再将环“嵌入”其中(详见分式域)。可以证明, K(R) 是包含 R 的“最小”的域。



  • 设 F 是一个域,定义 F(X) 是所有以 F 中元素为系数的分式的集合,则F(X) 是 F 的一个扩域。 F(X) 是 F 上的一个无穷维的向量空间,这是域的超越扩张的一个例子。



  • 设 F 是一个域, p(X) 是多项式环 F[X] 上的一个不可约多项式,则商环F[X]/<p(X)> 是一个域。其中的 <p(X)> 表示由 p(X) 生成的理想。举例来说, R[X]/<X2 + 1> 是一个域(同构于复数域 Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71 )。可以证明, F 的所有单扩张都同构于此类形式的域。



  • 若 V 是域 F 上的一个代数簇,则所有 V → F 的有理函数构成一个域,称为 V 的函数域





  • 由于序数不是集合,因此在其上定义的尼姆数不能构成真正的域。但它满足域的所有条件,且其任意封闭子集(如小于Quantum Field Theory II - 页 3 B7118a777168022f01f7439db6d769ad的所有自然数构成的子集)都是域。


[ltr]
基本性质[编辑][/ltr]


  • F中的所有非零元素的集合(一般记作F×) 是一个关于乘法的阿贝尔群F×的每个有限子群都是循环群



  • 若存在正整数n使得0 = 1 + 1 + ... + 1 (n 个1),那么这样的n中最小的一个称为这个域的特征,特征要么是一个素数 p,要么是0(表示这样的n不存在)。 此时 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 中最小的子域分别是 Quantum Field Theory II - 页 3 D45a4aa156a8ac07ab80e7d9cf5fa79f 或有限域 Quantum Field Theory II - 页 3 672c278f645d1e9be039a4da5309ad97,称之为 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 的素域



  • 一个交换环是域当且仅当它的理想只有自身和零理想。



  • 选择公理成立的假设下,对每个域F都存在着唯一的一个域G(在同构意义上),G包含FGF代数扩张,并且G代数封闭G称作由F确定的代数闭包。在很多情况下上述的同构并不是唯一的,因此又说GF的一个代数闭包。


[ltr]
参见[编辑][/ltr]



一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:36

域扩张[编辑]



[ltr]域扩张(field extensions)是数学分支抽象代数域论中的主要研究对象,基本想法是从一个基开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

定义[编辑]
KL是两个。如果存在从KL域同态ι,则称(L,ι)是K的一个域扩张,记作L/KKLKL[1]:9K称为域扩张的基域L称为K扩域[2]:2。如果某个域F既是K的扩域,又是L的子域,则称域扩张F/K是域扩张L/K子扩张,称F(域扩张L/K的)中间域
域扩张的记法L/K只是形式上的标记,不表示存在任何商环商群等代数结构。有些文献中也会将域扩张记为L:K
另外,因为ι是域同态,所以ι单射[3]。由于K是域,所以ι(K)是一个L的同构于K子域。很多时候也直接省略ι,直接将K视为L的一个子域[1]:9。为了记叙方便,下文中将依情况使用这种省略方式[N 1]
设有域扩张L/K,给定一个由L中不属于ι(K)的元素组成的集合S,考虑L中所有同时包含ι(K)和S的子域,其中有一个“最小的”[N 2],称为“在K中添加(集合)S生成的扩域”,记作K(S)。它是所有同时包含ι(K)和S的域的子域[2]:4-5。如果集合S只有一个元素a,则称域扩张K(S)/K单扩张,对应的扩域一般简记作K(a)。a称为这个域扩张的本原元
每个域扩张中,扩域可以看作是以基域为系数域的向量空间。设有域扩张L/K,将L中元素看作向量,K中元素看作系数,可以定义L中的域加法运算作为向量的加法运算,同时可以定义K中元素作为系数与L中元素的数乘运算。可以验证,在这样定义下,L是一个K-向量空间[1]:9[2]:2。它的维数称为域扩张的次数度数,一般记作[L:K][1]:9[2]:2。次数为1的扩张,扩域和基域同构,称为平凡扩张。次数有限的域扩张称为有限扩张,否则称为无限扩张[1]:9[2]:2
例子[编辑]
复数Quantum Field Theory II - 页 3 9be34c9da96bb3d6660e0f14f967af52实数Quantum Field Theory II - 页 3 0c95a37acc94ef8c093ce39c36e07886的扩域,而Quantum Field Theory II - 页 3 0c95a37acc94ef8c093ce39c36e07886则是有理数Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9的扩域。这样,显然Quantum Field Theory II - 页 3 Ffba72658b2ac79157eccb334c707021也是一个域扩张。实数到复数的域扩张次数:Quantum Field Theory II - 页 3 14b91f579c1ccc288438ab575760e14a。因为Quantum Field Theory II - 页 3 9be34c9da96bb3d6660e0f14f967af52可以看作是以Quantum Field Theory II - 页 3 30db897af3408f4c59c28c2d58f77fa7的实向量空间。故扩张Quantum Field Theory II - 页 3 Ffba72658b2ac79157eccb334c707021是有限扩张[1]:10Quantum Field Theory II - 页 3 804cd493ae7e50fe9ff2f4ae74856407,所以这个扩张是单扩张。
集合Quantum Field Theory II - 页 3 04b85832d46265955e0d84e669739830是在Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9中添加Quantum Field Theory II - 页 3 Ef5590434a387b3c4427e09d5b08baaf生成的扩域,显然也是一个单扩张。它的次数是2,因为因为Quantum Field Theory II - 页 3 E69c7a7d13001263ff1b230fb29745f3可作为一个基。Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9的有限扩张也称为代数数域,在代数数论有重要地位[2]:2
有理数的另一个扩张域是关于一个素数pp进数Quantum Field Theory II - 页 3 9cf8603b70ca83589d3e9b886677f270。它与Quantum Field Theory II - 页 3 0c95a37acc94ef8c093ce39c36e07886类似,是有理数域完备化得到的数域。但由于使用的拓扑不同,所以与Quantum Field Theory II - 页 3 0c95a37acc94ef8c093ce39c36e07886有着截然不同的性质。
对任何的素数p和正整数n,都存在一个元素个数为pn有限域,记作GF(pn)。它是有限域GF(p)(即Quantum Field Theory II - 页 3 23a4a6370c7ecace481a0de5aac7679c)的扩域。
给定域K和以K中元素为系数的K-不可约多项式P[N 3]PK上的多项式环K[X]的元素。P生成的理想极大理想,因此K[X]/P是域,而且是K的扩域。其中不定元X是多项式P的根。
给定域K,考虑所有以K中元素为系数的有理函数,即可以表示为两个以K中元素为系数的多项式PQ之比:PQ的函数。它们构成一个域,记作K(X),是多项式环K[X]的分式域。它是域K的扩域,次数为无限大[1]:10
基本性质[编辑]
设有域扩张L/K,则扩域LK有相同的加法和乘法单位元。加法群 (K, +) 是 (L,+) 的一个子群,乘法群 (K×, ·) 是 (L×, ·) 的一个子群。因此,LK有相同的特征
设有域扩张L/K及某个中间域F,则域扩张F/KL/F的次数乘积等于L/K的次数[1]:10[2]:9
Quantum Field Theory II - 页 3 Ae812823dde277f311f9dc7bf0e14f52
代数元与超越元[编辑]
主条目:代数扩张
给定域扩张L/K,如果L中一个元素a是某个以K中元素为系数的(非零)多项式(以下简称为K-多项式)的,则称aK上的一个代数元,否则称其为超越元[1]:10。如果L中每个元素都是K上的代数元,就称域扩张L/K代数扩张,否则称其为超越扩张[1]:11。例如Quantum Field Theory II - 页 3 Ef5590434a387b3c4427e09d5b08baafQuantum Field Theory II - 页 3 865c0c0b4ab0e063e5caa3387c1a8741都是Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9上的代数元,而eπ都是Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9上的超越元[1]:11Quantum Field Theory II - 页 3 C87b204334dd81b1f521af313b4aa9a9上的代数元和超越元分别叫做代数数超越数
每个有限扩张都是代数扩张,反之则不然[2]:10-11。超越扩张必然是无限扩张。给定域扩张L/K,如果L中元素要么属于K,要么是K上的超越元,则称LK的纯超越扩张。一个单扩张如果由添加代数元生成则是有限扩张,如果由添加超越元生成则是纯超越扩张。
极小多项式[编辑]
主条目:极小多项式
给定域扩张L/K,如果L中一个元素aK上的代数元,那么在所有使得f(a) = 0的首一K-多项式f中,存在一个次数最小的,称为aK上的极小多项式,记为πa[1]:11-12。设πan次多项式,则中间域K(a)等于所有以a为不定元的K-多项式的集合。更具体地说,等于所有以a为不定元的、次数严格小于nK-多项式的集合:K(a) = K[a] = Kn-1[a]。这说明K(a)中任何元素b都可以写成Quantum Field Theory II - 页 3 F95f7bd6973c4b17b9871a4e50048604的形式。其中Quantum Field Theory II - 页 3 67d2799fc487e9439e0e3316fb3e8624nK中元素。由于πa是极小多项式,所以可推出:Quantum Field Theory II - 页 3 853acbd26cefb50cc566e1e9463914b7是中间域K(a)作为K-向量空间的基。扩张K(a)/K的次数是[K(a) : K] = n.
分裂域与代数闭包[编辑]
主条目:分裂域代数闭域
分裂域是将某个多项式的根全部添加到其系数域中生成的域扩张,将多项式转化为域扩张进行研究。给定域扩张L/K,称一个K-多项式fL分裂,如果f可以写成:
Quantum Field Theory II - 页 3 16710509ab323dbb92336a7ec0fefdf0
的形式,即f的每个根都是L中的元素[2]:27-28。如果fL中分裂,但不在L的任何一个包含K的真子域中分裂(也就是说L是令f在其中分裂的“最小”的域扩张),就称LfK上的分裂域[2]:28
给定域K,如果所有K-多项式在K分裂,则称K代数闭域[2]:30。给定代数扩张L/K,如果L是代数闭域,则称其为K代数闭包,一般记作Kalg[2]:31。给定K,则它所有的代数闭包都是K-同构[N 4][2]:35
域扩张的自同构群[编辑]
除了将扩域看作基域上的向量空间外,另一个研究域扩张的角度是考察域扩张的自同构群。给定域扩张L/KL上的一个自同构σ被称为K-自同构,当且仅当σ限制在K上的部分是平凡的(即为恒等映射[2]:15-16
Quantum Field Theory II - 页 3 B0fe39043c8ac629cf1ce0f7b2fffa51
所有的K-自同构组成一个群,称为域扩张的自同构群,记作Aut(L/K)。这些自同构描绘了K“以外”的元素可以怎样相互变换而保持域L的域结构不变[2]:15-16
正规、可分与伽罗瓦扩张[编辑]
主条目:正规扩张伽罗瓦扩张
伽罗瓦扩张是伽罗瓦理论中的基础概念。有限的伽罗瓦扩张满足伽罗瓦理论基本定理,在此扩张的伽罗瓦群子群与其中间域之间建立了一一对应的关系,从而给出了中间域的清晰描述。
一般定义伽罗瓦扩张是正规可分的域扩张[2]:42。一个域扩张L/K称为正规扩张,如果对任何一个以K中元素为系数的不可约多项式P,只要它有一个根在L中,则它的所有根都在L中,也就是说可以分解为L上一次因式的乘积[2]:36。正规扩张也叫做准伽罗瓦扩张,它与伽罗瓦扩张的差别是伽罗瓦扩张还是可分扩张。一个代数扩张L/K称为可分扩张,如果L中每个元素在K上的极小多项式是可分的,即(在 K的一个代数闭包中)没有重根[2]:42。从以上正规扩张和可分扩张的定义中可以推出:一个域扩张L/K是伽罗瓦扩张,当且仅当它是某个以K中元素为系数的可分多项式的分裂域[2]:42
伽罗瓦扩张的自同构群称为其伽罗瓦群,记作Gal(L/K)。它的阶数(群中元素个数)等于伽罗瓦扩张的次数:[L:K]= | Gal(L/K) |。伽罗瓦理论基本定理说明,当伽罗瓦扩张是有限扩张的时候,给定Gal(L/K)的任一个子群H,唯一存在一个中间域KLHL与之对应,这个域LH恰好是L中对所有的H中的自同构固定的元素的集合[2]:51
Quantum Field Theory II - 页 3 D34a9d52ff7075beb85535bfecb36c74
这种对应关系被称作伽罗瓦对应。给定Gal(L/K)的子群HLH被称为H对应域。伽罗瓦对应建立了特定条件下域扩张与群论之间转化的纽带,通过研究特定群的结构,可以给出域扩张的仔细刻画。
相关条目[编辑]
[/ltr][/size]
[size][ltr]
注释[编辑]
[/ltr][/size]

  1. ^ 即,在不需要强调ι的时候,可以默认基域K是扩域L的子域。
  2. ^ 称某个代数结构是“最小”的,是指它是所有满足条件的代数结构的子集。如果承认佐恩引理,则这样的“最小”者一定存在:它是所有满足条件的代数结构的交集。下文同。
  3. ^ 这里的“多项式”指单变量多项式,下文同。
  4. ^ 即两者间存在环同构φ,并且它限制在K上的部分是平凡的(恒等映射)。

[size][ltr]
参考来源[编辑]
[/ltr][/size]

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Antoine Chambert-Loir. A Field Guide to Algebra. Springer(插图版). 2005.ISBN 9780387214283 (英文).
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.162.17 2.18 2.19 Patrick Morandi. Fields and Galois Theory. Springer(插图版). 1996. ISBN 9780387947532 (英文).
  3. ^ Francis Borceux, George Janelidze. Galois Theories. Cambridge University Press(插图版, 再版). 2001: Preface: x. ISBN 9780521803090(英文).


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:29

分类:仿射几何



[ltr]分类“仿射几何”中的页面
以下11个页面属于本分类,共11个页面。
[/ltr]
*

C



仿














分类




仿射空间[编辑]



[ltr]仿射空间数学中的几何结构,这种结构是欧式空间仿射特性的推广。在仿射空间中,点与点之间做差可以得到向量,点与向量做加法将得到另一个点,但是点与点之间不可以做加法。
非正式描述[size=13][编辑]

下面的非正式描述可能比正式的定义容易理解一些:仿射空间是没有起点只有方向大小的向量所构成的向量空间.假设有甲乙两人,其中甲知道一个空间中真正的原点,但是乙认为另一个点p才是原点。现在求两个向量ab的和。乙画出 pa和 p 到b 的箭头, 然后用平行四边形找到他认为的向量 a + b.但是甲认为乙画出的是向量p + (a − p) + (b − p).同样的,甲和乙可以计算向量ab线性组合,通常情况下他们会得到不同的结果。然而,请注意:
如果线性组合系数的和为1,那么甲和乙将得到同样的结果!
仿射空间就是这样产生的:甲知道空间的"线性结构".但是甲和乙都知道空间的"仿射结构",即他们都知道空间中仿射组合的值,其中仿射组合的定义为系数和为1的线性组合。
具有仿射结构的集合就是一个仿射空间。
参阅[编辑]
[/ltr][/size]
[size][ltr]
参考文献[编辑]
[/ltr][/size]
[size]
分类
[/size]





一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:32

代数几何[编辑]




Quantum Field Theory II - 页 3 220px-Togliatti_su***ce

Quantum Field Theory II - 页 3 Magnify-clip
陶里亚蒂曲面是一个五阶代数曲面。上图代表曲面的其中一个实轨迹

[ltr]
代数几何数学的一个分支,经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。
代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线椭圆抛物线双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。
代数几何在现代数学占中心地位,与多复变函数论微分几何拓扑学数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。
进入20世纪,代数几何的研究又衍生出几个分支:[/ltr]



[ltr]
20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学微分几何复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何数论等主流分支的问题研究。[/ltr]

[ltr]目录
  [隐藏[/ltr]




[ltr]

联立多项式的零点[编辑][/ltr]

Quantum Field Theory II - 页 3 200px-Slanted_circle

Quantum Field Theory II - 页 3 Magnify-clip
球和倾斜的圆周

[ltr]
在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间Quantum Field Theory II - 页 3 C35ed5f43a2953196b55e5207a2c959e中的单位球面被定义为满足方程
Quantum Field Theory II - 页 3 E0baa4a203619017cce5bdc2ee050721
的所有点Quantum Field Theory II - 页 3 4bf16061f8c120f8adc4ba78f47396a6的集合。
一个 "倾斜的" 圆周在三维欧几里德空间Quantum Field Theory II - 页 3 C35ed5f43a2953196b55e5207a2c959e中可以被定义为同时满足如下两个方程
Quantum Field Theory II - 页 3 E0baa4a203619017cce5bdc2ee050721Quantum Field Theory II - 页 3 03b7c4f63513026c5664996734ad4899
的所有点Quantum Field Theory II - 页 3 4bf16061f8c120f8adc4ba78f47396a6的集合。
仿射簇[编辑]
现在我们开始进入稍微抽象的领域。考虑一个数域 k,在古典代数几何中这个域通常是复数C,现在我们把它推广为一个代数封闭的数域。我们定义数域 k上的 n维仿射空间Quantum Field Theory II - 页 3 2cc341de361b8cc875035fe4685abb29,简单讲来,它只是一些点的集合,以下为方便我们简记为Quantum Field Theory II - 页 3 8e16d86139132fab774d2903c7847e55
如果函数
Quantum Field Theory II - 页 3 1340fa89538792f991e429d9370bd6e4
可以被写为多项式,即如果有多项式p
k[x1,...,xn] 上,
Quantum Field Theory II - 页 3 8e16d86139132fab774d2903c7847e55上的每个点
(t1,...,tn)
都有
f(t1,...,tn) = p(t1,...,tn),定义这个函数是正则的。
n维仿射空间的正则函数正是数域 kn个变量的多项式。我们将Quantum Field Theory II - 页 3 8e16d86139132fab774d2903c7847e55上的正则函数记为 Quantum Field Theory II - 页 3 46a1c462f05055566733298c5c45823e
正则函数[编辑]
仿射簇范畴[编辑]
射影空间[编辑]
现代的观点[编辑]
与数论的关系;Hodge 结构[编辑]
极小模型与双有理几何[编辑]
与拓扑场论的关系[编辑]
拓扑场论是数学物理中对sigma 模型sigma model)的场做路径积分量子化的理论。
sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部份被称为玻色场boson field),截面部份被称为费米场fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。
在一些特殊情况下,可以用局部化方法配分函数原在无限维空间积分化简为在有限维空间的积分。对不同的作用量action)而言,这个过程给出了代数几何的几种计数理论,包括:[/ltr]



[ltr]
IIB型弦论则利用了 Hodge 结构的形变来计算。
注解[编辑]

参见[编辑]
参考书目[编辑]
经典教科书,先于概形:[/ltr]



[ltr]
不使用概形的语言的现代教科书:[/ltr]



[ltr]
关于概形的教科书和参考书:[/ltr]



[ltr]
互联网上的资料:[/ltr]



分类




双有理几何[编辑]



[ltr]在代数几何中,双有理几何处理的是代数簇双有理等价之下不变的性质,也就是由其函数域决定的性质。这些性质包括维度算术亏格几何亏格小平维度等等。

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

曲线的情况[编辑]
任何曲线都双有理等价于一条平滑射影曲线。平滑射影曲线之间的有理映射能延拓为态射,双有理等价对应到同构;因此曲线的双有理几何无非是射影曲线的同构及其不变量问题。
高维情况[编辑]
在零特征域上,意大利学派在 1890-1910 年间建立代数曲面的基础理论,并完成了曲面的双有理分类。1970 年起的工作聚焦于三维以上情形。这方面的指导思想之一是极小模型纲领。
参见[编辑]
[/ltr][/size]
[size][ltr]
文献[编辑]
[/ltr][/size]

  • S. Iitaka, Algebraic geometry, an introduction to birational geometry of algebraic varieties , Springer (1982)
  • R. Hartshorne, Algebraic geometry , Springer (1977)



一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:32

代数曲线[编辑]





[ltr]在代数几何中,一条代数曲线是一维的代数簇。最典型的例子是射影平面 Quantum Field Theory II - 页 3 0eb7441b256532ca93558cb2bdd0854e 上由一个齐次多项式 Quantum Field Theory II - 页 3 4e918fe166e11e739566674493969343 定义的零点。[/ltr]


[ltr]目录
  [隐藏[/ltr]




[ltr]

仿射曲线[编辑]
定义在 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上的仿射代数曲线可以看作是 Quantum Field Theory II - 页 3 5a3435a7439796f256d568de2f0232ce 中由若干个 Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1-元多项式 Quantum Field Theory II - 页 3 Bae42d2f543cc954b22a3738708d5a9f 定义的公共零点,使得其维数为一。
利用结式,我们可以将变量消至两个,并化约到与之双有理等价的平面代数曲线 Quantum Field Theory II - 页 3 A4e83e912ce616d6298f3b1ab55b7bdb,其中 Quantum Field Theory II - 页 3 6e79b9a7a28c5c0d0806888ebce90860,因此在探讨曲线的双有理几何时仅须考虑平面曲线。
射影曲线[编辑]
射影空间中的曲线可视作仿射曲线的紧化,它们带有更好的几何性质。在以上考虑的方程 Quantum Field Theory II - 页 3 97544f6d72f2afad8ed96710eb47bcd9Quantum Field Theory II - 页 3 Bd86ebdc33351322d7f89b7da88fa48c) 中,我们作代换:
Quantum Field Theory II - 页 3 C23b3f551d109c9002568a3400f784ce
遂得到 Quantum Field Theory II - 页 3 A438673491daae8148eae77373b6a467 个齐次多项式,它们在射影空间 Quantum Field Theory II - 页 3 27b17023f1e20f414756088b5a1d5485 中定义一条曲线,此射影曲线与开集 Quantum Field Theory II - 页 3 Ee7596996e85fc3bccff793861e6e843 的交集同构于原曲线。射影曲线的例子包括 Quantum Field Theory II - 页 3 578e9f59cdd068f0901bfaecb3a306cb 中的费马曲线 Quantum Field Theory II - 页 3 4a68309649fe999dc1fc307d944a739f,其上的有理点对应到费马方程 Quantum Field Theory II - 页 3 8d27f15c8f57fec84d03d0ef23f596c0 的互素整数解。
代数函数域[编辑]
更多资料:函数域
代数曲线之研究可化约为不可约代数曲线之研究,后者的范畴在双有理等价之意义下等价于代数函数域范畴。域 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上的函数域 Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188 是超越次数为一的有限型域扩张,换言之:存在元素 Quantum Field Theory II - 页 3 055011102cd4a7625e250b7efd8990eb 使得 Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6 在 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上超越,而且 Quantum Field Theory II - 页 3 0816eb01ae993d5cfbd17f3acc9fce1f 是有限扩张
以复数域 Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71 为例,我们可以定义复系数有理函数域 Quantum Field Theory II - 页 3 26b592b0c5ffd2f2183a50916a71d04f。变元 Quantum Field Theory II - 页 3 F10bc3c94b77e1d6b9f98106daf335c1 对代数关系 Quantum Field Theory II - 页 3 73a916d62ac31fb297fd28f8b2949219 生成的域 Quantum Field Theory II - 页 3 0d72aef5fdb9edbfa073a1d698326a8f 是一个椭圆函数域,代数曲线 Quantum Field Theory II - 页 3 5e3e6e9ee8dd82b80ebe2aeaadc552a7 给出它的一个几何模型。
若基 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 非代数封闭域,则函数域无法只由多项式的零点描述,因为此时存在无点的曲线。例如可取实数域 Quantum Field Theory II - 页 3 535fae1dd3139172d58b8a54f8f47cda 并考虑其上的代数曲线 Quantum Field Theory II - 页 3 9839d49b103ef6abd0405a602c4d689c,此方程定义了一个 Quantum Field Theory II - 页 3 Beb0d99aaccc8e8ab19964a909b6e289 的有限扩张,因而定义了一个函数域,然而
Quantum Field Theory II - 页 3 51ba6175bdf0648445cf39264a538a60
代数封闭域上的代数曲线可以用代数簇完整地描述,对于一般的基域或者上的曲线论,概形论能提供较合适的框架。
复代数曲线与黎曼曲面[编辑]
更多资料:黎曼曲面
复射影曲线可以嵌入 Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 维复射影空间 Quantum Field Theory II - 页 3 Ae334ad15ac7ae5f1979fc97dc1f237b。复射影曲线在拓扑上为二维的对象,当曲线光滑时,它是个紧黎曼曲面,即一维的紧复流形,因而是可定向的二维紧流形。这时该曲面的拓扑亏格(直观说就是曲面有几个洞或把手)等同于曲线上由代数几何学定义的亏格。视这类曲线为黎曼曲面,则可以采复分析手法加以研究。另一方面,黎曼则证明了任何紧黎曼曲面都同构于一条复射影曲线。
于是我们有三个相互等价的范畴:复数域上的不可约平滑射影曲线、紧黎曼曲面与 Quantum Field Theory II - 页 3 F0b01fe0a1eec87c634584ac0694fb71 上的函数域。因此一维复分析(包括位势论)、代数几何论的方法此时能相互为用,这是高等数学里很常见的现象。
奇点[编辑]
判断方式[编辑]
曲线在一点 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 的平滑性可以用雅可比矩阵判断。以下考虑嵌于 Quantum Field Theory II - 页 3 F49c85d39aff72df706c6819bbe9c1c7 中的曲线:设该曲线由 Quantum Field Theory II - 页 3 A438673491daae8148eae77373b6a467 个 Quantum Field Theory II - 页 3 40b85027598d87611b1c8d5d11e46812 个变元的齐次多项式 Quantum Field Theory II - 页 3 96dcfeaa959a135b218471c968676b28 定义,若其雅可比矩阵 Quantum Field Theory II - 页 3 2861cdfe8265cb63e0666bda13f3f5bf在区线上一点 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 满秩,则称它 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 点光滑;反之则称为奇点。在一点的平滑性与多项式 Quantum Field Theory II - 页 3 96dcfeaa959a135b218471c968676b28 的选取无关,也与曲线的嵌入方式无关。
在平面射影曲线的例子,假设曲线 Quantum Field Theory II - 页 3 0d61f8370cad1d412f80b84d143e1257 由齐次方程式 Quantum Field Theory II - 页 3 E4f11314e248030278b1201114bada81 定义,则 Quantum Field Theory II - 页 3 0d61f8370cad1d412f80b84d143e1257 的奇点恰为 Quantum Field Theory II - 页 3 0d61f8370cad1d412f80b84d143e1257 上使得 Quantum Field Theory II - 页 3 8b89a43d93ebcb54fa54d24afb9e51b8 为零的点,即:
Quantum Field Theory II - 页 3 2b9648701b985668fb1bcee6318f62c8
在特征非零的域上,一条代数曲线仅有有限个奇点;无奇点的曲线即平滑曲线。奇点在双有理映射下可能映为光滑点;事实上,奇点总是可借着平面的拉开映射或正规化解消,由此得到的新平滑曲线仍双有理等价于原曲线;然而对代数封闭域上的射影曲线,其奇点总数则关系到曲线的几何亏格,后者是个双有理不变量。
奇点分类[编辑][/ltr]

Quantum Field Theory II - 页 3 220px-Cusp

Quantum Field Theory II - 页 3 Magnify-clip
x3 = y2

[ltr]
曲线的奇点包括多重点(这是曲线的自交点)及尖点(如仿射曲线 Quantum Field Theory II - 页 3 0c440f9e329eabe051c617315a8a2b7c 之于原点 Quantum Field Theory II - 页 3 5c16f757233856dcf311176b7410d2d5,见右图)等等。一般来说,仿射平面曲线 Quantum Field Theory II - 页 3 A4e83e912ce616d6298f3b1ab55b7bdb 在一点 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 的奇点性质可以透过下述方式理解:
透过平移,不妨假设 Quantum Field Theory II - 页 3 F925719f9cd9b02f0fd02f8c35dc91bb。将多项式 Quantum Field Theory II - 页 3 3baf1600ae50930a155f58ae172b51bd 写成
Quantum Field Theory II - 页 3 B17e5e24815dc45b39a7c9fa65226bc7
其中 Quantum Field Theory II - 页 3 2ab0989e869e20da970fea07d6b5ebf3 是 Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 次齐次多项式。直观地想像,Quantum Field Theory II - 页 3 A4e83e912ce616d6298f3b1ab55b7bdb 在原点附近的性状仅决定于最低次的非零项,设之为 Quantum Field Theory II - 页 3 9571a5456bf83748436bd5f1e5896b99。根据齐次性可以将之分解成
Quantum Field Theory II - 页 3 E29a79636d6f2ab9c9feadc370120142
换言之,曲线在原点附近将近似于 Quantum Field Theory II - 页 3 6f8f57715090da2632453988d9a1501b 条(含重复)直线 Quantum Field Theory II - 页 3 Bc45a1a262ef7ad4c897060a36d5fe59 的联集。上式中相异的直线数 Quantum Field Theory II - 页 3 4b43b0aee35624cd95b910189b3dc231 称作分支数,正整数 Quantum Field Theory II - 页 3 6f8f57715090da2632453988d9a1501b 称作平面曲线在该点的重数,此外还有一个内在的不变量 Quantum Field Theory II - 页 3 3a493a2c3299ad5bbe927654944526f6,其中 Quantum Field Theory II - 页 3 A1a18c8264ca9a81a6fb49e679cb88d3 是该曲线的正规化态射。资料 [m, δ, r] 能够被用来分类奇点。例如一般尖点对应到 Quantum Field Theory II - 页 3 C319237ceeab009b7403abf3a99d35f1一般双重点对应到 Quantum Field Theory II - 页 3 4ec7abcb606a925cbaa5bf05eb7be958,而一般n重点则对应到 Quantum Field Theory II - 页 3 11566dfd7c0eddb67b5173105e16d687
各奇点的不变量 δP决定平面曲线 Quantum Field Theory II - 页 3 A4e83e912ce616d6298f3b1ab55b7bdb 的亏格:设 Quantum Field Theory II - 页 3 16d5cc27e6e9b2964a7d1d830ebb9a59,则有
Quantum Field Theory II - 页 3 5da65f2c6b3d1b045864d057a5221bf3
对于在复数域上的平面曲线,John Milnor 以拓扑方式定义了不变量 μ,称为Milnor 数 :同样假设 Quantum Field Theory II - 页 3 F925719f9cd9b02f0fd02f8c35dc91bb,在原点附近够小的四维球 Quantum Field Theory II - 页 3 Df4b34426f6511afab8d545eb1761d3e 内有 Quantum Field Theory II - 页 3 Dd6a56ac858caebcc42762eb86220535,此时有连续映射
Quantum Field Theory II - 页 3 49afa8232eb66e97274ec3f8c6fb1e3d
由于 Quantum Field Theory II - 页 3 9fb614536b842fb309b3c121d62ff5d1 同伦等价于三维球面 Quantum Field Theory II - 页 3 33e5240c1f3b988576044ada267e3bc3,于是可定义 μ 为此映射的拓扑次数。μ 与前述不变量的关系由下式表明:
Quantum Field Theory II - 页 3 4ebace7e79b1be786a0868a0677acf5e
事实上,Quantum Field Theory II - 页 3 7f645c7dbc4a2dfcafd07c3f134e2345 在 ε 够小时是 Quantum Field Theory II - 页 3 Ce2ef9830edf829812fad456ef44c621 中的一个环圈,称作奇点环圈,它具有复杂的拓扑性质。例如:Quantum Field Theory II - 页 3 0c440f9e329eabe051c617315a8a2b7c 在尖点附近的奇点环圈是三叶结
曲线的例子[编辑]
有理曲线[编辑]
域 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上的有理曲线双有理等价于射影直线 Quantum Field Theory II - 页 3 Fe1b6b45838a607060c09b8b14fbcc61 的曲线,换言之,其函数域同构于单变元有理函数域 Quantum Field Theory II - 页 3 A48eec157e30dfd9744f9385bd164263。当 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 代数封闭时,这也等价于该曲线之亏格为零,对一般的域则不然;实数域上由 Quantum Field Theory II - 页 3 9839d49b103ef6abd0405a602c4d689c 给出的函数域亏格为零,而非有理函数域。
具体地说,一条有理曲线是能以有理函数参数化的曲线,例子请见条目有理正规曲线
任何 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上有有理点的圆锥曲线都是有理曲线。参数化的过程如下:过给定有理点 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 而斜率为 Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e 的直线交平面上一条二次曲线于两点,就 x 坐标来说,交点的 x 坐标是一个二次多项式的根,其中一个属于 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 的根已知,即 Quantum Field Theory II - 页 3 44c29edb103a2872f519ad0c9a0fdaaa 的 x 坐标;因此透过根与系数的关系得知另一根也属于 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012,而且能表作 Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e 在 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012 上的有理函数。y 坐标的作法相同。[/ltr]

Quantum Field Theory II - 页 3 220px-Rotated_elipse

Quantum Field Theory II - 页 3 Magnify-clip
x2 + xy + y2 = 1

[ltr]
 . 考虑斜椭圆 Quantum Field Theory II - 页 3 585d1cae8843c1a095e5eee5f12f0fb0,其中 Quantum Field Theory II - 页 3 E0e8df1bb589167f4821658def3ef372 是有理点。画一条过该点且斜率为 t 之直线 Quantum Field Theory II - 页 3 030805519ffe24be0436b36adffba40b,并带入 E 的等式,于是得到:
Quantum Field Theory II - 页 3 30acc7bc56d4171112200e9858b891b9Quantum Field Theory II - 页 3 2e2d07a95c593eeb1d0af58f1697c215
这就给出 E 的有理参数化,于是证明了 E 是有理曲线。
将此结果置于射影几何的框架下,则能导出若干数论的结论。例如我们可在 E 中加入无穷远点,得到射影曲线
Quantum Field Theory II - 页 3 5854dab676aea475e7a6df468bf4de40
以上参数化遂表为
Quantum Field Theory II - 页 3 98709ce3dd2c647d2a6bcf142272ae35
若取 Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e 为整数,对应的 Quantum Field Theory II - 页 3 0018ea864cfdaca5dd616457e5376705 是不定方程 Quantum Field Theory II - 页 3 306bcbd0af18de0814954d0c695c3ab6 的整数解;若将 Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383 代以 Quantum Field Theory II - 页 3 F04510959c08fcd1fefb100a4b7e7a74,则此方程诠释为 θ=60° 时的余弦定理,借此能描述所有一角为 60° 且边长均为整数的三角形,例如取 Quantum Field Theory II - 页 3 B0af76257fd334f5200fa9c2a421688a,就得到边长分别为 X=3, Y=8, Z=7 的三角形。
椭圆曲线[编辑]
更多资料:椭圆曲线
椭圆曲线可以定义为任意亏格等于一且给定一个有理点的代数曲线,它们都同构于平面上的三次曲线。此时通常取无穷远处的反曲点为给定的有理点,这时该曲线可以写作射影版本的 Tate-魏尔施特拉斯形式:
Quantum Field Theory II - 页 3 3e27b81f92ae27ce1aafa5113d9df058
椭圆曲线带有唯一的阿贝尔群结构,使得给定有理点为单位元素,且加法为代数簇的态射,因而椭圆曲线构成一个阿贝尔簇。在三次平面曲线的情形,三点和为零当且仅当它们共线。对于复数域上的椭圆曲线,此阿贝尔簇同构于 Quantum Field Theory II - 页 3 952d9c7d7bd37d061376e8ddf50c2643,其中的 Quantum Field Theory II - 页 3 B41b9dd23fcbbf9d222a2b66fd285d85 由相应的椭圆函数给出。
亏格大于一的曲线[编辑]
对亏格大于一的曲线,其性质与有理曲线与椭圆曲线有显著不同。根据 Falting 定理,定义在数域上的这类曲线只有有限个有理点;若视为黎曼曲面,它们则带有双曲几何的结构。例子包括超椭圆曲线克莱因四次曲线与一开始提到的费马曲线在 Quantum Field Theory II - 页 3 F8233aa1fafe3ee7992984a6e13b8257 的情形。
文献[编辑][/ltr]


  • Egbert Brieskorn and Horst Knörrer, Plane Algebraic Curves, John Stillwell, trans., Birkhäuser, 1986
  • Claude Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, American Mathematical Society, Mathematical Surveys Number VI, 1951
  • Hershel M. Farkas and Irwin Kra, Riemann Su***ces, Springer, 1980
  • Phillip A. Griffiths, Introduction to Algebraic Curves, Kuniko Weltin, trans., American Mathematical Society, Translation of Mathematical Monographs volume 70, 1985 revision
  • Robin Hartshorne, Algebraic Geometry, Springer, 1977
  • Shigeru Iitaka, Algebraic Geometry: An Introduction to the Birational Geometry of Algebraic Varieties, Springer, 1982
  • John Milnor, Singular Points of Complex Hypersu***ces, Princeton University Press, 1968
  • George Salmon, Higher Plane Curves, Third Edition, G. E. Stechert & Co., 1934
  • Jean-Pierre Serre, Algebraic Groups and Class Fields, Springer, 1988





代数簇[编辑]



[ltr]本文是关于代数簇的。关于“一簇代数”的概念,和其区别的解释,请参看簇 (泛代数)
代数几何学上,代数簇多项式集合的公共零点解的集合。代数簇是经典(某种程度上也是现代)代数几何的中心研究对象。
术语(variety)取自拉丁语族中词源(cognate of word)的概念,有基于“同源”而“变形”之意。
历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。在此基础上,希尔伯特零点定理提供了多项式环的理想和仿射空间子集的基本对应。利用零点定理和相关结果,我们能够用代数术语捕捉簇的几何概念,也能够用几何来承载环论中的问题。

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

形式定义[编辑]
仿射簇[编辑]
令 k 为代数封闭域并令Quantum Field Theory II - 页 3 665eee7fd59a3bb1f7fd8d7e9ad02862为 k 上的 n 维仿射空间Quantum Field Theory II - 页 3 C7b002b6d189baa8784a1b3ff8f059f6 借着代值可以视之为Quantum Field Theory II - 页 3 665eee7fd59a3bb1f7fd8d7e9ad02862上的Quantum Field Theory II - 页 3 8ce4b16b22b58894aa86c421e8759df3-值函数。对任何子集Quantum Field Theory II - 页 3 Ba3286b4e364c041d059c548d575cce3,定义Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e的零点为Quantum Field Theory II - 页 3 665eee7fd59a3bb1f7fd8d7e9ad02862里使Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e中所有元素取零值的点:
Quantum Field Theory II - 页 3 Cb4afd5ae0fa4582814b65c44b63d372对于所有Quantum Field Theory II - 页 3 B8dd4da9ff44356a8b9accd41a0275c4
若存在Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e使得Quantum Field Theory II - 页 3 38e62db785f7f2fdbe38a2ee79a1702e满足Quantum Field Theory II - 页 3 Dd8cd4958c39b20e01852296e5f8d8c9,则称之仿射代数集。一个非空代数集Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce被称作不可约,当且仅当它无法被写成两个真代数子集的联集。不可约仿射代数集称作仿射代数簇
借由将所有代数集定义为闭集,仿射簇可被赋与一个自然的拓扑结构,称之扎里斯基拓扑
给定Quantum Field Theory II - 页 3 38e62db785f7f2fdbe38a2ee79a1702e,令Quantum Field Theory II - 页 3 F8e4d83ddd64d6ab0d65526512c81003为所有在Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce上取零值的函数所成的理想
Quantum Field Theory II - 页 3 9eb034ddae319ef596c5bec43a91ee8d
对任意仿射代数集Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce,其座标环是多项式环对上述理想的商。
仿射簇之间的态射定义为多项式映射Quantum Field Theory II - 页 3 28134189a307e9e1ae74878123732cba的限制。
射影簇[编辑]
Quantum Field Theory II - 页 3 F49c85d39aff72df706c6819bbe9c1c7为 Quantum Field Theory II - 页 3 8ce4b16b22b58894aa86c421e8759df3 上的 n 维射影空间。虽然Quantum Field Theory II - 页 3 7a35cbc35af664762469ae0c4fc4829d中的齐次多项式无法在齐次座标上取值(因为齐次坐标系实际上是一个等价类),其零点却可明确地定义。对任意齐次多项式集合 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e,定义其零点为
Quantum Field Theory II - 页 3 97ef021fd70ac9058c5a2e69e3b739a1
若存在Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e使得Quantum Field Theory II - 页 3 40a2764a82fb9626047773ac30cf4afe,则称之射影代数集。不可约性的定义同前。不可约射影代数集称作射影代数簇
借着将所有代数集定为闭集,射影簇也赋有扎里斯基拓扑。
给定Quantum Field Theory II - 页 3 6c5e8691842cbf38df0be0e91d6e7178,令Quantum Field Theory II - 页 3 F8e4d83ddd64d6ab0d65526512c81003为所有在Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce上取零的齐次多项式。对任意射影代数集Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce,其齐次座标环定义为多项式环对此理想的商,这是一个分次环
射影代数集可由一组有限的仿射开集覆盖。射影簇之间的映射Quantum Field Theory II - 页 3 D10653246b8510daf15d33d41141919f被称作态射,当且仅当存在仿射开覆盖Quantum Field Theory II - 页 3 7b044a3fcf43b80991f64648f75fb492Quantum Field Theory II - 页 3 26f54acb738c6c740ede787a468d754f,使得每个Quantum Field Theory II - 页 3 46dc637bd3b4e6fcaa08d10b53a3eea6都是多项式映射。
拟仿射簇与拟射影簇[编辑]
一个仿射簇的开子集被称作拟仿射簇(例如Quantum Field Theory II - 页 3 D5fa71d7d0e9903b5b64160a845802ff,可证明它既非射影簇亦非仿射簇);同理,一个射影簇的开子集被称作拟射影簇。其间态射同样定义作局部上的多项式映射。
拟射影簇同时涵括了仿射簇、拟仿射簇与射影簇,它也是经典代数几何学的基本范畴。一个拟射影簇容许一组拓扑基,使得其中每个开集都是仿射簇;在此意义下,我们说一个拟射影簇可由仿射簇黏合而来。
基本结果[编辑]
[/ltr][/size]

  • 仿射代数集Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce是簇的充要条件是Quantum Field Theory II - 页 3 F8e4d83ddd64d6ab0d65526512c81003素理想;等价的说法是:Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce是簇当且仅当其座标环是整环
  • 每个非空仿射代数集都可以表成代数簇的联集,使得此分解中的代数簇两两不相包含,且此表法唯一。
  • Quantum Field Theory II - 页 3 9a0e4f84bc325ae8ac095813ddf1446d表簇Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce的座标环,Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce维度Quantum Field Theory II - 页 3 9a0e4f84bc325ae8ac095813ddf1446d的分式环对Quantum Field Theory II - 页 3 8ce4b16b22b58894aa86c421e8759df3超越次数

[size][ltr]
讨论与推广[编辑]
上述定义与事实让我们可以探讨经典代数几何。如欲更进一步(例如探讨非代数封闭域上的代数簇),则需要一些根本的改变。现行的代数簇概念较上述定义复杂,且适用于任何域Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188:一个抽象代数簇Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188上的有限型分离整概形。
概形可表为有限个仿射概形沿着开集的黏合,而Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188上的有限型仿射整概形不外就是仿射簇。因此我们可以沿着开集黏合有限多个Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188上的仿射簇,从而得到抽象代数簇,且无须担心它是否可嵌入射影空间。这也引起一个问题:我们可能会得到病态的对象,例如将Quantum Field Theory II - 页 3 5b1c6ae3d215b53230443bbb52e7d78b沿着Quantum Field Theory II - 页 3 3435645fea80147d26d669407a5fd075黏合,遂得到带有两个原点的仿射直线;是故要求分离性以排除之。
某些现代学者还去掉定义中的整性,只要求每个仿射开集的座标环有平凡的幂零根
上述的簇被称作塞尔意义下的簇,因为让-皮埃尔·塞尔的奠基之作Faisceaux algébriques cohérents(代数凝聚层)探讨了这类簇。尽管现在已有更抽象的对象作辅助,它们仍然是代数几何的踏脚石。
另一条推广的进路是容许可约代数集,所以其座标环不一定是整域;这在技术上只是一小步,更重要的推广是容许结构层中有幂零元素;幂零元无法被看作座标函数,也不影响拓扑结构。就范畴论观点,为了构造有限的射影极限(或构造纤维积),就必须容许幂零元。几何上而言,一个好的映射之纤维仍可能有“无穷小”结构。亚历山大·格罗滕迪克的概形论能融贯上述各种推广,但一般的“概形”仍不如“簇”来得富有几何直观。
此外尚有称作代数空间的深入推广。
参见[编辑]
[/ltr][/size]
[size][ltr]
文献[编辑]
[/ltr][/size]

  • Robin Hartshorne. Algebraic Geometry. Springer-Verlag. 1997. ISBN 0387902449.
  • David Cox; John Little, Don O'Shea. Ideals, Varieties, and Algorithms second edition. Springer-Verlag. 1997. ISBN 0387946802.
  • David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag. 1999. ISBN 0387942696.
  • David Dummit; Richard Foote. Abstract Algebra third edition. Wiley. 2003. ISBN 0471433349.


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:35

黎曼-罗赫定理[编辑]





[ltr]黎曼–罗赫定理(Riemann–Roch theorem)是数学中,特别是复分析代数几何,一个重要工具,它可计算具有指定零点与极点亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通黎曼曲面上的复分析以某种方式可转换为纯代数设置。
此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼短命的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。[/ltr]



[ltr]目录
  [隐藏[/ltr]




[ltr]

一些数据[编辑]
我们从一个亏格 g 的连通紧黎曼曲面开始,在上面取定一点 P。我们想知道极点只在 P 的函数。这是向量空间的一个递增序列:没有极点的函数(即常值函数),在 P 有单极点,在P 点最多有两个极点,三个极点……这些空间都是有限维的。在 g=0 我们可知维数的序列前几项为
1, 2, 3, ...:
这可由部分分式理论得出。反之,如果此序列开始为
1, 2, ...
则 g 必然是零(所谓黎曼球面)。
椭圆函数理论知,g=1 时此序列是
1, 1, 2, 3, 4, 5 ...
且这也刻画了 g=1 情形。当 g > 2 时,序列前端不是固定的;但我们可以确定此序列的后端。我们也可以看到为什么 g=2 的情形是特殊的,由超椭圆曲线理论,其序列开始几项为
1, 1, 2, ...
这些结论为何具有这种形式可以追溯到此定理的表述(罗赫的部分):两个维数之差。当其中一个可以为零,我们得到一个确定的公式,对亏格与度数(即自由度的个数)是线性的。这些例子已经可重构出如下形式
维数 − 修正项 = 度数 − g + 1。
对 g = 1,修正项当度数为 0 时是 1;其它情形是 0。整个定理说明修正项是函数空间的一个“补空间”的维数。
定理的陈述[编辑]
用现代记法,亏格为 g 的紧黎曼曲面与一个典范除子 K 的黎曼–罗赫定理表述为:
l(D) − l(K − D) = deg(D) − g + 1.
这对所有除子 D 均成立。除子是曲面上点的自由阿贝尔群中一个元素。等价地,一个除子是曲面上一些点的整系数线性组合。
我们定义一个亚纯函数 f 的除子为
Quantum Field Theory II - 页 3 33e2d5b4e3f15f04eaad7e4fd584ba54
这里 R(f) 是所有零点与极点的集合,而 sν 定义为[/ltr]


Quantum Field Theory II - 页 3 Fa830209df2ffe5588c5e7a6824d8219,如果 Quantum Field Theory II - 页 3 Ed6e31bbf8383172bfefd05c15119b17 是一个 Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661 重零点;
,如果 Quantum Field Theory II - 页 3 Ed6e31bbf8383172bfefd05c15119b17 是一个 Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661 阶极点。
[ltr]

我们类似地定义一个亚纯 1-形式的除子。一个整体亚纯函数的除子叫做主除子。相差一个主除子的两个除子称为线性等价。一个整体亚纯 1-形式的除子叫做典范除子(通常记作K)。任何两个亚纯 1-形式都是线性等价的,所以典范除子在线性等价的意义下是惟一的。
符号 deg(D) 表示除子 D 的度数,即在 D 中出现的系数之和。可以证明一个整体亚纯函数的除子的度数总是 0,所以除子的度数只取决于线性等价类。
数 l(D) 是首先感兴趣的量:使得 (h) + D 的所有系数都是非负的曲面上亚纯函数 h 组成的向量空间的维数(在 C 上)。直觉上,我们可以将其想象为在每一点处的极点不比 D 中对应系数更坏的所有亚纯函数;如果在 z 处 D 的系数是负数,则我们要求 h 在 z 处至少有那个重数的零点;如果 D 的系数是正数,h 最多有那个阶数的极点。线性等价的除子相应的向量空间通过乘以那个整体亚纯函数(这在差一个常数下是良定义的)是自然同构的。
即便我们对 K 一无所知,我们知道特殊性指标index of speciality[1][2](上文所说的修正项)
l(K − D) ≥ 0,
所以
l(D) ≥ deg(D) − g + 1
这就是早先提到的黎曼不等式
上面定理对所有紧连通黎曼曲面都成立。这个公式对一个代数闭域 k 上所有非奇异射影代数曲线也成立。这里 l(D) 表示在每一点的极点不坏于 D 中对应系数的曲线上有理函数空间的维数(在 k 上)。
为了将其与我们上面的例子联系起来,我们需要 K 的一些信息:对 g=1 我们可取 K=0,而对 g=0 可取 K = −2P (任何 P)。一般地 K 的度数是 2g − 2。只要 D 的度数至少是 2g − 1 我们可确保修正项是 0。
回到 g= 2 的情形我们可知上面提到的序列是
1, 1, ?, 2, 3, ... .
由此知度数为 2 的不确定项是 1 或 2,当然与点的选择有关。可以证明任何亏格为 2 的曲线恰有六个点的序列是 1, 1, 2, 2, ... 而其它一般点的序列是 1, 1, 1, 2, ...。特别地,一个亏格 2 曲线是超椭圆曲线。对 g>2 几乎所有点的序列以 g+1 个 1 开始,只有有限个点为其它序列(参见魏尔斯特拉斯点)。
推广[编辑]
曲线的黎曼–罗赫定理对黎曼曲面由黎曼与罗赫于1850年代证明,对代数曲线由施密特于1929年证明。它是基本的,曲线后续理论试图加细它的结论(比如布里尔–诺特理论Brill–Noether theory))。
在更高维(适当的定义除子线丛)此定理有多个版本。它们的一般表述取决于将定理分成两部分。其一,现在称为塞尔对偶性,将 l(K − D) 项解释为第一层同调群的维数,l(D) 为零次上同调群(或截面的空间)的维数,定理左边成为一个欧拉示性数,而右边给出它的计算,正好只与黎曼曲面的拓扑有关的一个度数。
在二维代数几何中这样一个公式由意大利几何学派找到;代数曲面的黎曼-罗赫定理证明了(有各种版本,最早可能属于马克斯·诺特。这样的问题大约在1950年前解决了。
n-维推广,希策布鲁赫–黎曼–罗赫定理,由弗里德里希·希策布鲁赫找到并证明,利用了代数拓扑学中的示性类;他深受小平邦彦的工作影响。大约在同一时间让-皮埃尔·塞尔给出了塞尔对偶性的一般形式,故我们冠以他的姓氏。
亚历山大·格罗滕迪克于1957年证明了一个深远的推广,现在叫做格罗滕迪克–黎曼–罗赫定理。他的工作将黎曼–罗赫重新解释为不仅是关于一个簇的定理,而是关于两个簇之间的一个态射的。证明的细节由博雷尔–塞尔于1958年发表。
最后在代数拓扑中也找到了一个一般版本。这些发展本质上在1950年至1960年完成。阿蒂亚–辛格指标定理开启了这一条推广的道路。
它导致的结论是一个凝聚层相当好计算。如果只对交错和中一项感兴趣,这是通常的情形,必需更进一步的讨论比如消灭定理vanishing theorem)。
脚注[编辑][/ltr]


  1. ^ Stichtenoth p.22
  2. ^ Mukai pp.295-297


[ltr]
参考文献[编辑][/ltr]






卡拉比-丘流形[编辑]



Quantum Field Theory II - 页 3 220px-Calabi-Yau
Quantum Field Theory II - 页 3 Magnify-clip
卡拉比–丘流形的3维投影
[size][ltr]
卡拉比–丘流形(Calabi–Yau manifold)在数学上是一个的第一陈类为0的紧致n凯勒流形(Kähler manifolds),也叫做卡拉比–丘 n-流形。数学家卡拉比(Eugenio Calabi)在1957年猜想所有这种流形(对于每个凯勒类)有一个里奇平坦流形的度量,该猜想于1977年被丘成桐证明,成为丘定理(Yau's theorem)。因此,卡拉比–丘流形也可定义为“紧里奇平坦卡拉比流形”(compact Ricci-flat Kähler manifold)。
也可以定义卡拉比–丘n流形为有一个SU(n)和乐(holonomy)的流形。再一个等价的定义是流形有一个全局非0的全纯(n,0)-形式

[/ltr][/size]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

例子[编辑]
在复一维的情况,唯一的例子就是环面族。注意环上里奇平坦的度量就是一个平坦度量,所以和乐群(holonomy)是平凡群,也叫SU(1)。
在复二维的情形,环T4K3曲面组成了仅有的实例。T4有时不被算作卡拉比–丘流形,因为其和乐群(也是平凡群)是SU(2)的子群而不是同构于SU(2)。从另一方面讲,K3曲面的和乐群是整个SU(2),所以他可以真正成为2维的卡拉比–丘流形。
在复三维的情况,可能的卡拉比–丘流形的分类还是未解决的问题。3维卡拉比–丘流形的一个例子是复射影空间CP4中的非奇异的五次超曲面。
在弦论中的应用[编辑]
卡拉比–丘流形对于超弦理论很重要。在最常规的超弦模型中,弦论中有十个猜想中的维度,作为我们所知的4个维度出现,在加上某种纤维化,纤维的维度为6。卡拉比–丘n-流形的紧致化很重要,因为他们保持一些原有的超对称性不被破坏。更精确地说,卡拉比–丘 3-流形(实维度6)的紧致化保持四分之一的原有超对称性不变。
参看[编辑]
[/ltr][/size]
[size][ltr]
文献[编辑]
[/ltr][/size]
[size][ltr]
外部链接[编辑]
[/ltr][/size]


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:37

Projective geometry

From Wikipedia, the free encyclopedia


[th]Geometry[/th][size][ltr]
In mathematicsprojective geometry is the study of geometric properties that are invariant under projective transformations. This means that, compared to elementary geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, in a given dimension, and that geometric transformations are permitted that move the extra points (called "points at infinity") to traditional points, and vice versa.
Properties meaningful in projective geometry are respected by this new idea of transformation, which is more radical in its effects than expressible by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometric language is adequate to the novel situation. It is not possible to talk about angles in projective geometry as it is inEuclidean geometry, because angle is an example of a concept not invariant under projective transformations, as is seen clearly inperspective drawing. One source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, once the concept is translated into projective geometry's terms. Again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. Seeprojective plane for the basics of projective geometry in two dimensions.
While the ideas were available earlier, projective geometry was mainly a development of the nineteenth century. A huge body of research made it the most representative field of geometry of that time. This was the theory of complex projective space, since the coordinates used (homogeneous coordinates) were complex numbers. Several major strands of more abstract mathematics (including invariant theory, the Italian school of algebraic geometry, and Felix Klein's Erlangen programme leading to the study of the classical groups) built on projective geometry. It was also a subject with a large number of practitioners for its own sake, under the banner of synthetic geometry. Another field that emerged from axiomatic studies of projective geometry is finite geometry.
The field of projective geometry is itself now divided into many research subfields, two examples of which are projective algebraic geometry (the study of projective varieties) andprojective differential geometry (the study of differential invariants of the projective transformations).

[/ltr][/size]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Overview[edit]
[/ltr][/size]
Quantum Field Theory II - 页 3 Theoreme_fondamental_geometrie_projective
Quantum Field Theory II - 页 3 Magnify-clip
The Fundamental Theory of Projective Geometry
[size][ltr]
Projective geometry is an elementary non-metrical form of geometry, meaning that it is not based on a concept of distance. In two dimensions it begins with the study of configurations of points and lines. That there is indeed some geometric interest in this sparse setting was seen as projective geometry was developed by Desargues and others in their exploration of the principles of perspective art.[1] In higher dimensional spaces there are considered hyperplanes (that always meet), and other linear subspaces, which exhibit the principle of duality. The simplest illustration of duality is in the projective plane, where the statements "two distinct points determine a unique line" (i.e. the line through them) and "two distinct lines determine a unique point" (i.e. their point of intersection) show the same structure as propositions. Projective geometry can also be seen as a geometry of constructions with a straight-edge alone.[2] Since projective geometry excludes compass constructions, there are no circles, no angles, no measurements, no parallels, and no concept of intermediacy.[3] It was realised that the theorems that do hold in projective geometry are simpler statements. For example the different conic sections are all equivalent in (complex) projective geometry, and some theorems about circles can be seen as special cases of these general theorems.
In the early 19th century the work of PonceletLazare Carnot and others established projective geometry as an independent field of mathematics .[3] Its rigorous foundations were addressed by Karl von Staudt and perfected by Italians Giuseppe PeanoMario PieriAlessandro Padoa and Gino Fano late in the 19th century.[4] Projective geometry, like affine andEuclidean geometry, can also be developed from the Erlangen program of Felix Klein; projective geometry is characterized byinvariants under transformations of the projective group.
After much work on the very large number of theorems in the subject, therefore, the basics of projective geometry became understood. The incidence structure and the cross-ratioare fundamental invariants under projective transformations. Projective geometry can be modeled by the affine plane (or affine space) plus a line (hyperplane) "at infinity" and then treating that line (or hyperplane) as "ordinary".[5] An algebraic model for doing projective geometry in the style of analytic geometry is given by homogeneous coordinates.[6][7] On the other hand axiomatic studies revealed the existence of non-Desarguesian planes, examples to show that the axioms of incidence can be modelled (in two dimensions only) by structures not accessible to reasoning through homogeneous coordinate systems.
[/ltr][/size]
Quantum Field Theory II - 页 3 300px-Growth_measure_and_vortices
Quantum Field Theory II - 页 3 Magnify-clip
Growth measure and the polar vortices. Based on the work of Lawrence Edwards
[size][ltr]
In a foundational sense, projective geometry and ordered geometry are elementary since they involve a minimum of axiomsand either can be used as the foundation for affine and Euclidean geometry.[8][9] Projective geometry is not "ordered"[3] and so it is a distinct foundation for geometry.
History[edit]
The first geometrical properties of a projective nature were discovered in the third century A.D. by Pappus of Alexandria.[3]Filippo Brunelleschi (1404–1472) started investigating the geometry of perspective in 1425[10] (see the history of perspectivefor a more thorough discussion of the work in the fine arts that motivated much of the development of projective geometry).Johannes Kepler (1571–1630) and Gérard Desargues (1591–1661) independently developed the pivotal concept of the "point at infinity".[11] Desargues developed an alternative way of constructing perspective drawings by generalizing the use of vanishing points to include the case when these are infinitely far away. He made Euclidean geometry, where parallel lines are truly parallel, into a special case of an all-encompassing geometric system. Desargues's study on conic sections drew the attention of 16-year old Blaise Pascal and helped him formulate Pascal's theorem. The works of Gaspard Monge at the end of 18th and beginning of 19th century were important for the subsequent development of projective geometry. The work of Desargues was ignored until Michel Chasles chanced upon a handwritten copy in 1845. Meanwhile, Jean-Victor Poncelet had published the foundational treatise on projective geometry in 1822. Poncelet separated the projective properties of objects in individual class and establishing a relationship between metric and projective properties. The non-Euclidean geometries discovered shortly thereafter were eventually demonstrated to have models, such as the Klein model of hyperbolic space, relating to projective geometry.
This early 19th century projective geometry was a stepping stone from analytic geometry to algebraic geometry. When treated in terms of homogeneous coordinates, projective geometry looks like an extension or technical improvement of the use of coordinates to reduce geometric problems to algebra, an extension reducing the number of special cases. The detailed study of quadrics and the "line geometry" of Julius Plücker still form a rich set of examples for geometers working with more general concepts.
The work of PonceletSteiner and others was not intended to extend analytic geometry. Techniques were supposed to be synthetic: in effect projective space as now understood was to be introduced axiomatically. As a result, reformulating early work in projective geometry so that it satisfies current standards of rigor can be somewhat difficult. Even in the case of the projective plane alone, the axiomatic approach can result in models not describable via linear algebra.
This period in geometry was overtaken by research on the general algebraic curve by ClebschRiemannMax Noether and others, which stretched existing techniques, and then by invariant theory. Towards the end of the century the Italian school of algebraic geometry (EnriquesSegreSeveri) broke out of the traditional subject matter into an area demanding deeper techniques.
In the later part of the 19th century, the detailed study of projective geometry became less fashionable, although the literature is voluminous. Some important work was done inenumerative geometry in particular, by Schubert, that is now seen as anticipating the theory of Chern classes, taken as representing the algebraic topology of Grassmannians.
Paul Dirac studied projective geometry and used it as a basis for developing his concepts of Quantum Mechanics, although his published results were always in algebraic form. See a blog article referring to an article and a book on this subject, also to a talk Dirac gave to a general audience in 1972 in Boston about projective geometry, without specifics as to its application in his physics.
Description[edit]
Projective geometry is less restrictive than either Euclidean geometry or affine geometry. It is an intrinsically non-metrical geometry, whose facts are independent of any metric structure. Under the projective transformations, the incidence structure and the relation of projective harmonic conjugates are preserved. A projective range is the one-dimensional foundation. Projective geometry formalizes one of the central principles of perspective art: that parallel lines meet at infinity, and therefore are drawn that way. In essence, a projective geometry may be thought of as an extension of Euclidean geometry in which the "direction" of each line is subsumed within the line as an extra "point", and in which a "horizon" of directions corresponding to coplanar lines is regarded as a "line". Thus, two parallel lines meet on a horizon line in virtue of their possessing the same direction.
Idealized directions are referred to as points at infinity, while idealized horizons are referred to as lines at infinity. In turn, all these lines lie in the plane at infinity. However, infinity is a metric concept, so a purely projective geometry does not single out any points, lines or plane in this regard—those at infinity are treated just like any others.
Because a Euclidean geometry is contained within a Projective geometry, with Projective geometry having a simpler foundation, general results in Euclidean geometry may be arrived at in a more transparent fashion, where separate but similar theorems in Euclidean geometry may be handled collectively within the framework of projective geometry. For example, parallel and nonparallel lines need not be treated as separate cases – we single out some arbitrary projective plane as the ideal plane and locate it "at infinity" usinghomogeneous coordinates.
Additional properties of fundamental importance include Desargues' Theorem and the Theorem of Pappus. In projective spaces of dimension 3 or greater there is a construction that allows one to prove Desargues' Theorem. But for dimension 2, it must be separately postulated.
Under Desargues' Theorem, combined with the other axioms, it is possible to define the basic operations of arithmetic, geometrically. The resulting operations satisfy the axioms of a field—except that the commutativity of multiplication requires Pappus's hexagon theorem. As a result, the points of each line are in one to one correspondence with a given field, F, supplemented by an additional element, W, such that rW = W, −W = W, r+W = W, r/0 = W, r/W = 0, W−r = r−W = W. However, 0/0, W/W, W+W, W−W, 0W and W0 remain undefined.
Projective geometry also includes a full theory of conic sections, a subject already very well developed in Euclidean geometry. There are clear advantages in being able to think of a hyperbola and an ellipse as distinguished only by the way the hyperbola lies across the line at infinity; and that a parabola is distinguished only by being tangent to the same line. The whole family of circles can be seen as conics passing through two given points on the line at infinity—at the cost of requiring complex coordinates. Since coordinates are not "synthetic", one replaces them by fixing a line and two points on it, and considering the linear system of all conics passing through those points as the basic object of study. This approach proved very attractive to talented geometers, and the field was thoroughly worked over. An example of this approach is the multi-volume treatise by H. F. Baker.
There are many projective geometries, which may be divided into discrete and continuous: a discrete geometry comprises a set of points, which may or may not be finite in number, while a continuous geometry has infinitely many points with no gaps in between.
The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be carried out in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem.
[/ltr][/size]
Quantum Field Theory II - 页 3 220px-Fano_plane.svg
Quantum Field Theory II - 页 3 Magnify-clip
The Fano plane is the projective plane with the fewest points and lines.
[size][ltr]
According to Greenberg (1999) and others, the simplest 2-dimensional projective geometry is the Fano plane, which has 3 points on every line, with 7 points and lines in all arranged with the following schedule of collinearities:
[/ltr][/size]

  • [ABC]
  • [ADE]
  • [AFG]
  • [BDG]
  • [BEF]
  • [CDF]
  • [CEG]

[size][ltr]
with the affine coordinates A = {0,0}, B = {0,1}, C = {0,W} = {1,W}, D = {1,0}, E = {W,0} = {W,1}, F = {1,1}, G = {W, W}. The coordinates in a Desarguesian plane for the points designated to be the points at infinity (in this example: C, E and G) are generally not unambiguously defined.[clarification needed]
In standard notation, a finite projective geometry is written PG(a,b) where:
a is the projective (or geometric) dimension, andb is one less than the number of points on a line (called the order of the geometry).
Thus, the example having only 7 points is written PG(2,2).
The term "projective geometry" is sometimes used to indicate the generalised underlying abstract geometry, and sometimes to indicate a particular geometry of wide interest, such as the metric geometry of flat space which we analyse through the use of homogeneous coordinates, and in which Euclidean geometry may be embedded (hence its name,Extended Euclidean plane).
The fundamental property that singles out all projective geometries is the elliptic incidence property that any two distinct lines L and M in the projective plane intersect at exactly one point P. The special case in analytic geometry of parallel lines is subsumed in the smoother form of a line at infinity on which P lies. The line at infinity is thus a line like any other in the theory: it is in no way special or distinguished. (In the later spirit of the Erlangen programme one could point to the way the group of transformations can move any line to the line at infinity).
Given a line l and a point P not on the line, the elliptic parallel property contrasts with the Euclidean and hyperbolic parallel properties as follows:
[/ltr][/size][th]Elliptic[/th][th]Euclidean[/th][th]Hyperbolic[/th]
 :any line through P meets l in just one point.
 :just one line through P may be found, which does not meet l.
 :more than one line through P may be found, which do not meet l.
[size][ltr]
The elliptic parallel property is the key idea which leads to the principle of projective duality, possibly the most important property which all projective geometries have in common.
Duality[edit]
For more details on this topic, see Duality (projective geometry).
In 1825, Joseph Gergonne noted the principle of duality characterizing projective plane geometry: given any theorem or definition of that geometry, substituting point for linelie onfor pass throughcollinear for concurrentintersection for join, or vice versa, results in another theorem or valid definition, the "dual" of the first. Similarly in 3 dimensions, the duality relation holds between points and planes, allowing any theorem to be transformed by swapping point and plane, is contained by and contains. More generally, for projective spaces of dimension N, there is a duality between the subspaces of dimension R and dimension N−R−1. For N = 2, this specializes to the most commonly known form of duality—that between points and lines. The duality principle was also discovered independently by Jean-Victor Poncelet.
To establish duality only requires establishing theorems which are the dual versions of the axioms for the dimension in question. Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S (assuming planes P and S are distinct from Q and R).
In practice, the principle of duality allows us to set up a dual correspondence between two geometric constructions. The most famous of these is the polarity or reciprocity of two figures in a conic curve (in 2 dimensions) or a quadric su***ce (in 3 dimensions). A commonplace example is found in the reciprocation of a symmetrical polyhedron in a concentric sphere to obtain the dual polyhedron.
Axioms of projective geometry[edit]
Any given geometry may be deduced from an appropriate set of axioms. Projective geometries are characterised by the "elliptic parallel" axiom, that any two planes always meet in just one line, or in the plane, any two lines always meet in just one point. In other words, there are no such things as parallel lines or planes in projective geometry. Many alternative sets of axioms for projective geometry have been proposed (see for example Coxeter 2003, Hilbert & Cohn-Vossen 1999, Greenberg 1980).
Whitehead's axioms[edit]
These axioms are based on Whitehead, "The Axioms of Projective Geometry". There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are:
[/ltr][/size]

  • G1: Every line contains at least 3 points
  • G2: Every two points, A and B, lie on a unique line, AB.
  • G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).

[size][ltr]
The reason each line is assumed to contain at least 3 points is to eliminate some degenerate cases. The spaces satisfying these three axioms either have at most one line, or are projective spaces of some dimension over a division ring, or are non-Desarguesian planes.
One can add further axioms restricting the dimension or the coordinate ring. For example, Coxeter's Projective Geometry,[12] references Veblen[13] in the three axioms above, together with a further 5 axioms that make the dimension 3 and the coordinate ring a commutative field of characteristic not 2.
Axioms using a ternary relation[edit]
One can pursue axiomatization by postulating a ternary relation, [ABC] to denote when three points (not all necessarily distinct) are collinear. An axiomatization may be written down in terms of this relation as well:
[/ltr][/size]

  • C0: [ABA]
  • C1: If A and B are two points such that [ABC] and [ABD] then [BDC]
  • C2: If A and B are two points then there is a third point C such that [ABC]
  • C3: If A and C are two points, B and D also, with [BCE], [ADE] but not [ABE] then there is a point F such that [ACF] and [BDF].

[size][ltr]
For two different points, A and B, the line AB is defined as consisting of all points C for which [ABC]. The axioms C0 and C1 then provide a formalization of G2; C2 for G1 and C3 for G3.
The concept of line generalizes to planes and higher-dimensional subspaces. A subspace, AB…XY may thus be recursively defined in terms of the subspace AB…X as that containing all the points of all lines YZ, as Z ranges over AB…X. Collinearity then generalizes to the relation of "independence". A set {A, B, …, Z} of points is independent, [AB…Z] if {A, B, …, Z} is a minimal generating subset for the subspace AB…Z.
The projective axioms may be supplemented by further axioms postulating limits on the dimension of the space. The minimum dimension is determined by the existence of an independent set of the required size. For the lowest dimensions, the relevant conditions may be stated in equivalent form as follows. A projective space is of:
[/ltr][/size]

  • (L1) at least dimension 0 if it has at least 1 point,
  • (L2) at least dimension 1 if it has at least 2 distinct points (and therefore a line),
  • (L3) at least dimension 2 if it has at least 3 non-collinear points (or two lines, or a line and a point not on the line),
  • (L4) at least dimension 3 if it has at least 4 non-coplanar points.

[size][ltr]
The maximum dimension may also be determined in a similar fashion. For the lowest dimensions, they take on the following forms. A projective space is of:
[/ltr][/size]

  • (M1) at most dimension 0 if it has no more than 1 point,
  • (M2) at most dimension 1 if it has no more than 1 line,
  • (M3) at most dimension 2 if it has no more than 1 plane,

[size][ltr]
and so on. It is a general theorem (a consequence of axiom (3)) that all coplanar lines intersect—the very principle Projective Geometry was originally intended to embody. Therefore, property (M3) may be equivalently stated that all lines intersect one another.
It is generally assumed that projective spaces are of at least dimension 2. In some cases, if the focus is on projective planes, a variant of M3 may be postulated. The axioms of (Eves 1997: 111), for instance, include (1), (2), (L3) and (M3). Axiom (3) becomes vacuously true under (M3) and is therefore not needed in this context.
Axioms for projective planes[edit]
Main article: Projective plane
In incidence geometry, most authors[14] give a treatment that embraces the Fano plane PG(2, 2) as the minimal finite projective plane. An axiom system that achieves this is as follows:
[/ltr][/size]

  • (P1) Any two distinct points lie on a unique line.
  • (P2) Any two distinct lines meet in a unique point.
  • (P3) There exist at least four points of which no three are collinear.

[size][ltr]
Coxeter's Introduction to Geometry[15] gives a list of five axioms for a more restrictive concept of a projective plane attributed to Bachmann, adding Pappus's theorem to the list of axioms above (which eliminates non-Desarguesian planes) and excluding projective planes over fields of characteristic 2 (those that don't satisfy Fano's axiom). The restricted planes given in this manner more closely resemble the real projective plane.
See also[edit]
[/ltr][/size]


[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Ramanan 1997, p. 88
  2. Jump up^ Coxeter 2003, p. v
  3. Jump up to:a b c d Coxeter 1969, p. 229
  4. Jump up^ Coxeter 2003, p. 14
  5. Jump up^ Coxeter 1969, pp. 93, 261
  6. Jump up^ Coxeter 1969, pp. 234–238
  7. Jump up^ Coxeter 2003, pp. 111–132
  8. Jump up^ Coxeter 1969, pp. 175–262
  9. Jump up^ Coxeter 2003, pp. 102–110
  10. Jump up^ Coxeter 2003, p. 2
  11. Jump up^ Coxeter 2003, p. 3
  12. Jump up^ Coxeter 2003, pp. 14–15
  13. Jump up^ Veblen 1966, pp. 16, 18, 24, 45
  14. Jump up^ Bennett 1995, pg. 4, Beutelspacher & Rosenberg 1998, pg. 8, Casse 2006, pg. 29,Cederberg 2001, pg. 9, Garner 1981, pg. 7, Hughes & Piper 1973, pg. 77, Mihalek 1972, pg. 29, Polster 1998, pg. 5 and Samuel 1988, pg. 21 among the references given.
  15. Jump up^ Coxeter 1969, pp. 229–234

[size][ltr]
References[edit]
[/ltr][/size]

  • F. Bachmann, 1959. Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, Berlin.
  • Baer, Reinhold (2005). Linear Algebra and Projective Geometry. Mineola NY: Dover. ISBN 0-486-44565-8.
  • Bennett, M.K. (1995). Affine and Projective Geometry. New York: Wiley. ISBN 0-471-11315-8.
  • Beutelspacher, Albrecht; Rosenbaum, Ute (1998). Projective Geometry: from foundations to applications. Cambridge: Cambridge University Press. ISBN 0-521-48277-1.
  • Casse, Rey (2006). Projective Geometry: An Introduction. New York: Oxford University Press. ISBN 0-19-929886-6.
  • Cederberg, Judith N. (2001). A Course in Modern Geometries. New York: Springer-Verlag. ISBN 0-387-98972-2.
  • Coxeter, H. S. M., 1995. The Real Projective Plane, 3rd ed. Springer Verlag.
  • Coxeter, H. S. M., 2003. Projective Geometry, 2nd ed. Springer Verlag. ISBN 978-0-387-40623-7.
  • Coxeter, H. S. M. (1969). Introduction to Geometry. New York: John Wiley & Sons. ISBN 0-471-50458-0.
  • Dembowski, Peter (1968), Finite geometriesErgebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-VerlagISBN 3-540-61786-8,MR 0233275
  • Howard Eves, 1997. Foundations and Fundamental Concepts of Mathematics, 3rd ed. Dover.
  • Garner, Lynn E. (1981). An Outline of Projective Geometry. New York: North Holland. ISBN 0-444-00423-8.
  • Greenberg, M.J., 2007. Euclidean and non-Euclidean geometries, 4th ed. Freeman.
  • Richard Hartley and Andrew Zisserman, 2003. Multiple view geometry in computer vision, 2nd ed. Cambridge University Press. ISBN 0-521-54051-8
  • Hartshorne, Robin, 2009. Foundations of Projective Geometry, 2nd ed. Ishi Press. ISBN 978-4-87187-837-1
  • Hartshorne, Robin, 2000. Geometry: Euclid and Beyond. Springer.
  • Hilbert, D. and Cohn-Vossen, S., 1999. Geometry and the imagination, 2nd ed. Chelsea.
  • D. R. Hughes and F. C. Piper, 1973. Projective Planes, Springer.
  • Mihalek, R.J. (1972). Projective Geometry and Algebraic Structures. New York: Academic Press. ISBN 0-12-495550-9.
  • Polster, Burkard (1998). A Geometrical Picture Book. New York: Springer-Verlag. ISBN 0-387-98437-2.
  • Ramanan, S. (August 1997). "Projective geometry". Resonance (Springer India) 2 (Cool: 87–94. doi:10.1007/BF02835009ISSN 0971-8044.
  • Samuel, Pierre (1988). Projective Geometry. New York: Springer-Verlag. ISBN 0-387-96752-4.
  • Veblen, Oswald; Young, J. W. A. (1938). Projective geometry. Boston: Ginn & Co. ISBN 978-1-4181-8285-4.

[size][ltr]
External links[edit]
[/ltr][/size]


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:39

实射影空间[编辑]



[ltr]数学中,实射影空间(real projective space),记作 RPn,是 Rn+1 中的直线组成的射影空间。它是一个 n 维光滑流形,也是格拉斯曼流形的一个特例。

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

构造[编辑]
与所有射影空间一样,RPn 是通过取 Rn+1 − {0} 在等价关系 x ∼ λx 对所有实数 λ ≠ 0 下的商空间。对所有 x 属于 Rn+1 − {0},总可找到一个 λ 使得t λx 的范数为 1。恰好有相差一个符号的两个这样的 λ。
故 RPn 也可通过将 Rn+1 中单位 n-维球面 Sn 的对径点等同起来得到。
进一步我们限制在 Sn 的上半球面,仅将边界赤道上的对径点等同。这说明 RPn 闭 n-维圆盘 Dn 将边界 ∂Dn = Sn−1 上的对径点等同。
低维例子[编辑]
Quantum Field Theory II - 页 3 253229c1c091ac708157d580a1d65f14 也成为实射影直线拓扑等价于圆周
Quantum Field Theory II - 页 3 815e170ae5e804ed3dd8ebaaee49c4db 称为实射影平面
Quantum Field Theory II - 页 3 3be95a69b77dbea51ed39ca2593e4300 (微分同胚)是 SO(3),从而有一个群结构;覆叠映射 Quantum Field Theory II - 页 3 5de09db6e0994f01db069d498a841a38 是一个群映射 Quantum Field Theory II - 页 3 3c069ac21a5926a3a13bbbb7f9171392,这里 Spin(3)是 SO(3) 的万有覆叠李群
拓扑[编辑]
n-维球面的对径映射(将 x 送到 -x)生成 Sn 上一个 Z2 群作用。上已提到,这个作用的轨道空间是 RPn。这个作用恰是一个覆叠空间作用,使 Sn 成为 RPn 的二重复叠。因为对 n ≥ 2,Sn 是单连通的,它们在此情形也是万有覆叠。从而当 n > 1 时,RPn 的基本群是 Z2(当 n=1 基本群是 Z 因为同胚于 S1)。基本的一个生成元是连接 Sn 中一组对径点的曲线投影到 RPn 上的闭曲线。
点集拓扑[编辑]
n-维射影空间的一些行之:
[/ltr][/size]

  • 1-维射影空间同胚与圆周。



  • 2-维射影空间不能嵌入 R3。但可以嵌入 R4 以及浸入 R3



  • n-维射影空间事实上同胚于 R(n+1)[sup]2[/sup] 中所有迹为 1 的对称 (n+1)×(n+1) 幂等线性变换组成的子流形。



  • n-维射影空间是紧连通空间,基本群同构于 2 阶循环群(从 n-维球面到 n-维射影空间的商映射是 n-维射影射影空间被一个道路连通空间的二重复叠)。

[size][ltr]
同伦群[编辑]
Quantum Field Theory II - 页 3 805a72e0355e478060a95b691609e9b7 的高次同伦群恰好是 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8 的高阶同伦群,有纤维化的同伦长正合序列得出。
确切地,这个纤维丛是
Quantum Field Theory II - 页 3 2cb21d29d0e1b4d23368d89aafed5b53
你也可以类似于复射影空间将其写成
Quantum Field Theory II - 页 3 002df159de***3d00294113f024e5e5

Quantum Field Theory II - 页 3 990bf636301bd733355570cfb22c29a5
低次同调群是
Quantum Field Theory II - 页 3 B27a0dac068a5a32233af996d8d8c930
光滑结构[编辑]
实射影空间是光滑流形。在 Sn 的齐次坐标 (x1...xn+1) 中,考虑子集 Ui 使得 xi ≠ 0。每个 Ui 同胚于 Rn 中的开单位球体,且坐标转移函数是光滑的。这给出了 RPn 一个光滑结构
CW 结构[编辑]
实射影空间 RPn 有一个 CW结构,在每一维有 1 个胞腔。
在 Sn 上的齐次坐标 (x1 ... xn+1) 中,坐标邻域 U1 = {(x1 ... xn+1)|x1 ≠ 0} 可与 n-维圆盘 Dn 的内部等价。当 xi = 0,我们有 RPn - 1。从而 RPn 的 n - 1 骨架是 RPn - 1,而且黏贴映射 f:Sn-1 → RPn - 1 是一个二对一映射。我们可令
Quantum Field Theory II - 页 3 7af31d02f3d23a55c4aaf0e51c5e840e
归纳证明 RPn 是一个 CW 复形,在每一维有 1 个胞腔。
这些胞腔与旗流形flag manifold)上一样是舒伯特胞腔Schubert cell)。这便是,取一个完全(称为标准旗)0 = V0 < V1 <...< Vn;则闭 k-胞腔是属于 Vk 中的直线。而开 k-胞腔(k-胞腔的内部)是 Vk\Vk-1 中的直线(属于 Vk 但不属于 Vk - 1 的直线)。
在齐次坐标(关于旗的)中,这些胞腔是
Quantum Field Theory II - 页 3 69da952969ba4e5a68fc6d63885de950Quantum Field Theory II - 页 3 D8994669e62388b3a2c8b43a3921a3b7Quantum Field Theory II - 页 3 70e4c7b983e3bc5849c2cfd6af4a431eQuantum Field Theory II - 页 3 4d6a962ee42ea9e73467e7c60fe9813a
这不是一个正则 CW 结构,因黏贴映射是二对一的。但它的覆盖是球面上一个正则 CW 结构,在每一维有 2 个胞腔;事实上,这是球面上最小的正则 CW 结构。
在光滑结构的帮助下,莫尔斯函数的存在性可证明 RPn 是一个 CW 复形。在齐次坐标中,这样一个函数可为:
Quantum Field Theory II - 页 3 E07d3228a1e7c25dfff21a32b92101fb
在每个邻域 Uig 有非退化奇点 (0...,1,...0),这里 1 出现于第 i 个位置,具有莫尔斯指标 i。这说明了 RPn 是一个在每一维有一个胞腔的 CW 复形。
同调[编辑]
与上面 CW 结构相伴的胞腔链复形在每个维数 0,...,n 恰有一个胞腔。对每个维数 k,边界映射 dk : δDk → RPk-1/RPk-2,坍塌到 Sk - 1 上的赤道然后将对径点等同。在奇数(偶数)维,度数为 0(2):
Quantum Field Theory II - 页 3 88e8d13b031f0c35f3c124fc5115a9ba
从而整同调
Quantum Field Theory II - 页 3 1da976e8dcc16cefd3e817dd1953bf6a
可定向性[编辑]
Quantum Field Theory II - 页 3 805a72e0355e478060a95b691609e9b7 可定向当且仅当 n 为奇数,上面的同调计算已经做了说明。更具体地,Quantum Field Theory II - 页 3 17831d285bb31f73a8ad1e246ffd8244 上的对径映射有符号 Quantum Field Theory II - 页 3 846a9b5e8ee943316c761578ddb67b90,所以它是保定向的当且仅当 p 是偶数。从而定向特征标orientation character)是:Quantum Field Theory II - 页 3 3a3aee0dde1053524eb57fd8297722f7 中的非平凡回路作为 Quantum Field Theory II - 页 3 2982c31ff18f3af45c2875c43c76ee6e 作用在定向上,所以 Quantum Field Theory II - 页 3 805a72e0355e478060a95b691609e9b7 可定向当且仅当 n+1 为偶数,即 n 为奇数。
重言丛[编辑]
在实射影空间上有一个自然的线丛,称为重言丛。更确切地,这称为重言子丛,也存在一个对偶 n-维丛称为重言商丛。
几何[编辑]
实射影空间有一个常正数量曲率度量,由二重复叠的标准圆球面(对极映射是一个等距)得来。
对标准圆度量,其截面曲率恒等于 1。
测度[编辑]
在标准圆度量中,射影空间的测度恰好是球面测度的一半。
无穷实射影空间[编辑]
无穷实射影空间构造为有限射影空间的正向极限或并集:
Quantum Field Theory II - 页 3 8215f39bdb1e5711360465d36c696d69
拓扑上说,这是艾伦伯格-麦克兰恩空间Eilenberg-MacLane space) Quantum Field Theory II - 页 3 19d365260641dc235c480510fed7f048(它被可缩的无穷球面 Quantum Field Theory II - 页 3 43af73e2a2a243eb8efc494f90d0e1fb 二重复叠)并且是 BO(1)线丛分类空间(更一般地,无穷格拉斯曼流形向量丛的分类空间)。
系数取 Z/2 的上同调环
Quantum Field Theory II - 页 3 08b76f69e9a05168615af6e2e03b34a5
这里 Quantum Field Theory II - 页 3 4cc4c6c3e516ed7c3fdc29080c4b8098 是第一斯蒂弗尔-惠特尼类: 它是 Quantum Field Theory II - 页 3 4cc4c6c3e516ed7c3fdc29080c4b8098(其度数为 1)上的自由 Quantum Field Theory II - 页 3 6d19fd948aa65b5fd5147bf7730c71f1-代数。
相关条目[编辑]
[/ltr][/size]

分类




对偶 (数学)[编辑]



[ltr]在数学领域中,对偶一般来说是以一对一的方式,常常(但并不总是)通过某个对合算子,把一种概念、公理或数学结构转化为另一种概念、公理或数学结构:如果A的对偶是B,那么B的对偶是A。由于对合有时候会存在不动点,因此A的对偶有时候会是A自身。比如射影几何中的笛沙格定理,即是在这一意义下的自对偶。
对偶在数学背景当中具有很多种意义,而且,尽管它是“现代数学中极为普遍且重要的概念(a very pervasive and important concept in (modern) mathematics)”[1]并且是“在数学几乎每一个分支中都会出现的重要的一般性主题(an important general theme that has manifestations in almost every area of mathematics)”[2],但仍然没有一个能把对偶的所有概念统一起来的普适定义。[2]
在两类对象之间的对偶很多都和配对(pairing),也就是把一类对象和另一类对象映射到某一族标量上的双线性函数相对应。例如,线性代数的对偶对应着把线性空间中的向量对双线性映射到标量上,广义函数及其相关的试验函数也对应着一个配对且在该配对中可用试验函数来对广义函数进行积分,庞加莱对偶从给定流形的子流形之间的配对的角度看同样也对应着交数[3]

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

序逆对偶[编辑]
一种特别简单的对偶形式来自于序理论。偏序关系P = (X, ≤)的对偶是由同一偏序集组成但关系相反的偏序关系Pd。我们比较熟悉的对偶偏序的例子有:
[/ltr][/size]

  • 任何集合簇上的子集和超集关系Quantum Field Theory II - 页 3 7afa88c2877d79e6a8a190b360edfcd6Quantum Field Theory II - 页 3 0f2c04f82a1eb8e3e371366214579f5b



  • 整数上的因数倍数关系;



  • 人类集合上的后代祖先关系。

[size][ltr]
为某一偏序P定义的概念会对应到对偶偏序集Pd对偶概念上。例如,P极小元对应于Pd极大元:极小和极大是序理论中的对偶概念。序理论中的其他对偶概念还包括上界下界上闭集合下闭集合理想滤子
一种特殊的序逆对偶存在于某个集合S的幂集合中:若Quantum Field Theory II - 页 3 3e2cdd1b96b31d955de90f8c76b72602表示补集,则Quantum Field Theory II - 页 3 Bdada2015b691adc22b8378ed4ef82d3当且仅当Quantum Field Theory II - 页 3 383c03a3a95f4208cc576c5149af7d80。在拓扑学中,开集闭集是对偶概念:开集的补是闭的,反之亦然。在拟阵论中,某个给定拟阵的独立集合的补集簇形成另一个拟阵,称作对偶拟阵。在逻辑中,我们可以把非量化公式中变量的成真赋值表示为对该赋值为真的变量集合。成真赋值满足该公式当且仅当该成真赋值的补满足该公式的德·摩根定律。逻辑中的全称量词和存在量词也是类似的对偶。
偏序可以解释为范畴,在该范畴中存在从xy的arrow当且仅当偏序中有x ≤ y。偏序的序逆对偶可扩展为对偶范畴的概念,即由给定范畴中所有arrow的逆所组成的范畴。后面将要描述的很多具体的对偶都是在此意义下的范畴的对偶。
维逆对偶[编辑]
[/ltr][/size]
Quantum Field Theory II - 页 3 200px-Dual_Cube-Octahedron.svg
Quantum Field Theory II - 页 3 Magnify-clip
The features of the cube and its dual octahedron correspond one-for-one with dimensions reversed.
[size][ltr]
存在着很多种不同但互相联系的在同一类几何或拓扑对象之间的对偶,不过具有对偶关系的对象在特征维数上是相反的。这方面的经典例子是正多面体的对偶,其中立方体和正八面体形成了一个对偶配对,正十二面体和正二十面体形成了另一个对偶配对,而正四面体是自对偶的。任何一种这类多面体的对偶多面体可作为主要多面体每一面中心点的凸包
相关条目[编辑]
[/ltr][/size]
[size][ltr]
Notes[编辑]
[/ltr][/size]

  1. ^ Kostrikin 2001
  2. 2.0 2.1 Gowers 2008,p. 187, col. 1
  3. ^ Gowers 2008,p. 189, col. 2

[size][ltr]
参考资料[编辑]
[/ltr][/size]
[size]
分类
[/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-20, 01:40

复射影平面[编辑]



[ltr]数学中,复射影平面(complex projective plane),通常记作Quantum Field Theory II - 页 3 411c323e54bf9edf05efbe23fa213b3d,是二维复射影空间。它是一个复流形,由三个复坐标描述
Quantum Field Theory II - 页 3 06aee9e92588f82f4f7c9434b9c53844
但这里差一个整体缩放的三元组是等同的:
Quantum Field Theory II - 页 3 0084222b85b3fec02ad730d790e72673
这就是说,它们是射影几何的传统意义下的齐次坐标
复射影平面是一个二维复流形,作为一个四维实流形,它的上同调群
Quantum Field Theory II - 页 3 50d32661ef50a064fb101f94407148ed
中间第二维的生成元由位于此平面中的复射影直线或称黎曼球面的上同调类Quantum Field Theory II - 页 3 7b774effe4a349c6dd82ad4f4f21d34c给出。它的上同调环由 Quantum Field Theory II - 页 3 551613e02ea4605e316f17182c7c2d29Quantum Field Theory II - 页 3 B715908d354ab8dda2efd836f1b2e66a决定。
双有理几何中,复有理曲面是任何双有理等价于复射影平面的代数曲面。我们知道任何非奇异有理簇可由此平面通过曲线的拉开变换与其逆(压平)序列得到,一定是非常特殊的一类。特别的一种情形,P3 中一个非奇异复二次曲线是由此平面通过拉开两点为曲线,然后将通过这两点的直线拉开得到;这个变换的逆过程可视为取二次曲线 Q 中一点 P,将其拉开,通过作过 P 的直线将其投影到 P3 中一个一般平面。
复射影平面的双有理自同态群是克里摩拿群Cremona group)。
相关条目[size=13][编辑]

[/ltr][/size]

分类




富比尼–施图迪度量[编辑]



[ltr]在数学中,富比尼–施图迪度量(Fubini–Study metric)是射影希尔伯特空间上一个凯勒度量。所谓射影希尔伯特空间即赋予了埃尔米特形式复射影空间 CPn。这个度量最先由圭多·富比尼爱德华·施图迪在1904年与1905年描述。
向量空间 Cn+1 上一个埃尔米特形式定义了 GL(n+1,C) 中一个子群 U(n+1)。一个富比尼–施图迪度量在差一个位似(整体缩放)的意义下由这样一个 U(n+1) 作用下的不变性决定;从而是齐性的。赋予这样一个富比尼–施图迪度量后,CPn 是一个对称空间。度量的特定正规化与(2n+1)-球面上的标准度量有关。在代数几何中,利用一个正规化使 CPn 成为一个霍奇流形

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

构造[编辑]
富比尼–施图迪度量自然出现于复射影空间商空间构造。
具体地,可以定义 CPn 由 Cn+1 中复直线组成的空间,即 Cn+1 在将一点与其所有复数倍联系在一起的等价关系下的商。这与在乘法群 C* = C \ {0} 的对角群作用下的商相同:
Quantum Field Theory II - 页 3 9f013896d61647f54ece6205998e49ea
这个商将 Cn+1 实现为底空间 CPn 上的复线丛(事实上这就是 CPn 上所谓的重言丛)。CPn 中的一点等同于 (n+1)-元组 [Z0,...,Zn] 模去非零复缩放的一个等价类;这些 Zi 称为这个点的齐次坐标
进一步,我们可以分两步实现这个商:因为乘以一个非零复数 z = Re 可以惟一地想成一个以模长 R 为因子的缩放与沿着原点一个逆时针旋转角度 Quantum Field Theory II - 页 3 50d91f80cbb8feda1d10e167107ad1ff 的复合,商 Cn+1CPn 分成两块。
Quantum Field Theory II - 页 3 D15f91e41cd02a219f006ef50fbdefc6
其中第 (a) 步以正实数乘法群 R+ 的缩放 Z ~ RZ,这里 R ∈R+,作商;步骤 (b) 是关于旋转 Z ~ eZ 的商。
第 (a) 步所得的商是由方程 |Z|2 = |Z0|2 + ... + |Zn|2 = 1 所定义的实超球面 S2n+1。第 (b) 步的商实现为 CPn = S2n+1/S1,这里 S1 表示旋转群。这个商由著名的霍普夫纤维化S1 → S2n+1 → CPn实现 ,纤维属于 Quantum Field Theory II - 页 3 B620734e994ba47adf9624e9fe425e45 中的大圆
作为度量商[编辑]
当取一个黎曼流形(或一般的度量空间)的商时,必须小心确认商空间赋有一个良定义的度量。例如,如果群 G 作用在黎曼流形 (X,g)上,则为了是轨道空间 X/G 拥有一个诱导度量,Quantum Field Theory II - 页 3 B2f5ff47436671b6e533d8dc3614845d 沿着 G-轨道必须是常值,这便是说对任何元素 h ∈ G 以及一对向量场 Quantum Field Theory II - 页 3 D23a4ce8bca0f4891e037439a79b45a6 必须有 g(Xh,Yh) = g(X,Y)。
'Cn+1 上标准埃尔米特度量在标准基下为
Quantum Field Theory II - 页 3 8cb158cd7ad4b9bf25ea11d076d617da
它的实化是 R2n 上标准欧几里得度量。这个度量在 C* 的作用下没有不变性,所以我们不能直接将其推下到商空间 CPn 中。但是,这个度量在旋转群 S1 = U(1) 的对角作用下是不变的。从而,上面构造中的步骤 (b) 是可能的只要完成步骤 (a)。
富比尼–施图迪度量是在商CPn = S2n+1/S1 上诱导的度量, 其中 Quantum Field Theory II - 页 3 B620734e994ba47adf9624e9fe425e45 带着所谓的“圆度量”,是标准欧几里得度量在单位超球面上的限制。
在局部仿射坐标中[编辑]
对应于 CPn 中具有齐次坐标(Z0,...,Zn) 的一点,只要 Z0 ≠ 0,存在惟一 n 个坐标集合 (z1,…,zn) 使得
Quantum Field Theory II - 页 3 9b6b9f8ba467a28ae5f91bbe90a0f777
特别地 zj = Zj/Z0。这个 (z1,…,zn) 组成 CPn 在坐标片 U0 = {Z0 ≠0 } 上的一个仿射坐标系。在任意坐标片 Ui={Zi≠0} 上通过除以 Zi,得到一个仿射坐标系。这 n+1 个坐标片 Ui 盖住了CPn,在 Ui 上可以利用仿射坐标系 (z1,…,zn) 给出度量的具体表达式。坐标导数定义了 CPn 全纯切丛的一个标架 Quantum Field Theory II - 页 3 3ee944c6ddae771db642967ccd2e9440,利用它们富比尼–施图迪度量具有埃尔米特分量
Quantum Field Theory II - 页 3 D1b5c804ca2bae7d9f498f68d35d839f
这里|z|2 = z12+...+zn2。这样,富比尼–施图迪度量在这个标架下的埃尔米特矩阵
Quantum Field Theory II - 页 3 2e5d207aace645338daa6a0c18079c1c
注意每个矩阵元素是酉不变的:对角作用 Quantum Field Theory II - 页 3 Caaa3fc26b4570d9b3cc2fb074798ce3 不会改变这个矩阵。
对应地,线元素
Quantum Field Theory II - 页 3 79b6d03a030c75eb144b6c2c71be804d
在最后的表达式中,使用了爱因斯坦求和约定,拉丁字母指标 i 和 j 从 1 求到 n
在齐次坐标中[编辑]
在齐次坐标 Z = [Z0,...,Zn] 中也有相应的表达式。形式上,我们有
Quantum Field Theory II - 页 3 6e981af9e70ff56848f953364e4a4387
上面所涉及表达式需合适地理解。上面使用了求和约定,希腊字母指标从 0 求到 n,最后一个等式使用了一个张量的反对称部分的标准记号:
Quantum Field Theory II - 页 3 Dc96a1499e5d83f78974e772c4097eeb
现在,ds2 的这个表达式显然在重言丛 Cn+1\{0} 的全空间上定义了一个张量。通过沿着 CPn 上重言丛的一个全纯截面 σ 拉回为 CPn 上一个张量。还需验证拉回值与界面的选取无关:这可以直接计算。
差一个整体正规化常数,这个度量的凯勒形式为
Quantum Field Theory II - 页 3 D0211340d184613f341f33cf8e45c397
其拉回显然与全纯界面的选取无关。量 log|Z|2 是 CPn 的凯勒数量。
n = 1 情形[编辑]
当 n = 1,有由球极投影给出的微分同胚 Quantum Field Theory II - 页 3 Df375214be11834726203b153e5b9fe1。这导致了特殊的霍普夫纤维化 S1S3S2。当在 CP1 中的坐标系写出富比尼–施图迪度量,它在实切丛上的限制得出 S2 上半径 1/2 的通常圆度量。
具体地,如果 z = x + iy 是黎曼球面 CP1 上标准仿射坐标卡,且x=rcosθ, y = rsinθ 是 C 上的极坐标,则一个简单的计算表明
Quantum Field Theory II - 页 3 A5a45ddda48bb28c611595a10540c54f
这里 Quantum Field Theory II - 页 3 3ba3c13f0589839aefef95f34912f064 是单位 2-球面上的圆度量。其中 φ, θ 是由球极投影 r tan(φ/2) = 1, tanθ = y/x 给出的 S2 “数学家的”球坐标(许多物理学家偏向于将 φ 和 θ互换)。
曲率性质[编辑]
在 n = 1 的特例,富比尼–施图迪度量具有恒等于 4 的数量曲率,因为它与 2-球面的圆度量等价(半径 R 球面的数量曲率是 Quantum Field Theory II - 页 3 20c80f40324031c6d13295a6d0d7742e)。但是,对 n > 1,富比尼–施图迪度量没有常曲率。其截面曲率由下列方程给出[1]
Quantum Field Theory II - 页 3 D0583ec1e2056bb844c23628d942443b
这里 Quantum Field Theory II - 页 3 069f536ac9d31f705f0d3a2497a20a0f 是 2-维平面 σ 的一个标准正交基J : TCPn → TCPn 是 CPn 上的复结构,而 Quantum Field Theory II - 页 3 E02eaeb6eb365f078ca029f67f7a6973 是富比尼–施图迪度量。
这个公式的一个推论是任何 2-维平面 Quantum Field Theory II - 页 3 9d43cb8bbcb702e9d5943de477f099e2 的截面曲率满足 Quantum Field Theory II - 页 3 D15d6e0a61f1203f42b90ae4e66e407a。最大的截面曲率 (4) 在一个全纯 2-维平面得到——对这样的平面有 J(σ) ⊂ σ ——而最小截面曲率 (1) 在J(σ) 垂直于 σ 的2-维平面 σ 得到。因此,富比尼–施图迪度量经常称为有等于 4 的常全纯截面曲率。
这使 CPn 成为一个(非严格的)四分之一拼挤流形quarter pinched manifold);一个著名的定理指出严格四分之一拼挤单连通 n-流形一定同胚于球面。
富比尼–施图迪度量也是一个爱因斯坦度量,它与里奇张量成比例:存在一个常数 λ 使得对所有 i,j 我们有
Quantum Field Theory II - 页 3 823c524066a7619c290328f873348cbb
除此以外,这蕴含着,在差一个数量相乘的意义下,富比尼–施图迪度量在里奇流下不变。这也使 CPn 与广义相对论不可分离,它是真空爱因斯坦方程的一个非平凡解。
量子力学[编辑]
富比尼–施图迪度量可以用量子力学中广泛使用的狄拉克符号,或代数几何中的射影簇记号来定义。为了将两种语言清楚地等同起来,令
Quantum Field Theory II - 页 3 808da04ace06fd10d395a921ab832dd3
这里 Quantum Field Theory II - 页 3 C7d04707273f61c0deba2788497d82e5 是希尔伯特空间的一个正交规范基向量集合,Quantum Field Theory II - 页 3 3e4bb5b03a72d6b18b81836fd7ac6d6c 是复数,而 Quantum Field Theory II - 页 3 940d3495f2a257a6e47eecaf44250683 是射影空间 Quantum Field Theory II - 页 3 Ae334ad15ac7ae5f1979fc97dc1f237b 中一点在齐次坐标中的标准记号。那么,给定空间中两点 Quantum Field Theory II - 页 3 71948fd08597451c3363bc1e26866de1 与 Quantum Field Theory II - 页 3 D1a3dc4278e9ec266ebbcf070968f639,它们之间的距离是
Quantum Field Theory II - 页 3 A7246372327ac46747b9ef98ffd39c32
或等价地,在射影簇记号中,
Quantum Field Theory II - 页 3 253783f625e6f31ac8cca43a2dd528cd
这里 Quantum Field Theory II - 页 3 D54ee32995d189da887e1c9ee2a09d37 是 Quantum Field Theory II - 页 3 94ac90eebee8cd5924256da4e618e560 的复共轭。分母中出现的 Quantum Field Theory II - 页 3 A21cb0948f32faf2c40a31d50cee5161 提醒了 Quantum Field Theory II - 页 3 F407865acb630d639a7dd6cf45499c05 以及类似的 Quantum Field Theory II - 页 3 C0052043a8c1b2cfe43310530ddaa6f9 不是单位长规范化的;故这里明确地做了一个规范化。在希尔伯特空间中,此度量可相当平凡地理解为两个向量之间的角度;故它又称为量子角(quantum angle)。这个角度是实值的,取值于零到 Quantum Field Theory II - 页 3 1f8b57e932cf2d585ed71af904be8638
通过取 Quantum Field Theory II - 页 3 3e8c982ca0bbf7f5ca66a003183a8626,或等价地 Quantum Field Theory II - 页 3 10cbe3a8d6402a1b428b6b7c14b54542,马上可以等到这个度量的无穷小形式
Quantum Field Theory II - 页 3 9c94222ecc758bfeebe8c0884c3a7ce7
量子力学中,CP1 叫做布洛赫球面;富比尼–施图迪度量是量子力学几何化的自然度量。量子力学的许多独特的行为,包括量子纠缠贝里相位Berry phase)效应,可以归于富比尼–施图迪度量的特性。
乘积度量[编辑]
通常的可分性概念适用于富比尼–施图迪度量。更准确地讲,此度量在射影空间的自然乘积塞格雷嵌入Segre embedding)中是可分的。这是说如果 Quantum Field Theory II - 页 3 F407865acb630d639a7dd6cf45499c05 是一个可分态,从而可以写成 Quantum Field Theory II - 页 3 F8324364a07d8ff282ea7e0df5cf6015,则度量是子空间上度量之和:
Quantum Field Theory II - 页 3 77c9f61afcfd7c14d365b4b1f3159bd9
这里 Quantum Field Theory II - 页 3 5b36d8149f2c2c8896cd266b72c4922a 和 Quantum Field Theory II - 页 3 3e15ed1a7925007841088b458b70d028 是在子空间 A 与 B 上各自的度量。
相关条目[编辑]
[/ltr][/size]
[size][ltr]
参考文献[编辑]
[/ltr][/size]

  1. ^ Sakai, T. Riemannian Geometry, Translations of Mathematical Monographs No. 149 (1995), American Mathematics Society.



[size]
分类
[/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-21, 05:54

分类:层论



[ltr]分类“层论”中的页面
以下6个页面属于本分类,共6个页面。
[ltr]C
[/ltr][/ltr]

[size][ltr][ltr]
I
[/ltr][/ltr][/size]
[size][ltr][ltr]

[/ltr][/ltr][/size]
[size][ltr][ltr]

[/ltr][/ltr][/size]
[size][ltr][ltr]

[/ltr][/ltr][/size]
[size][ltr][ltr]

[/ltr][/ltr][/size]





层 (数学)[编辑]





[ltr]数学上,在给定拓扑空间X上的一个层(sheaf)(或译F对于X的每个开集给出一个集合或者一个更丰富的结构F(U)。这个结构F(U)和把开集限制(restricting)到更小的子集的操作相容,并且可以把小的开集起来得到更大的。一个预层(presheaf)和一个层相似,但它可能不可以粘起来。事实上,层使得我们可以用一种细致的方式讨论什么是局部性质,就像应用在函数上的层。[/ltr]


[ltr]目录
  [隐藏[/ltr]




[ltr]

简介[编辑]
层用于拓扑代数几何微分几何,只要想跟踪给定的几何空间的随着每个开集变化的代数数据,就可以用层。他们是研究局部有变化(依赖于所选开集的)的对象的全局工具。这样,它们是研究有局部本质的实体的全局行为的自然工具,例如开集解析函数流形,等等。
作为一个典型的例子,考虑拓扑空间X,对于每个X中的开集U,令F(U)为所有连续函数U → R的集合。如果VU的开子集,则U上的函数可以限制到V上,而我们得到映射F(U) → F(V)。"粘合"描述了下列过程:假设Ui是给定的开集其并为U,对于每个i我们给定一个元素fi ∈ FUi),一个连续函数fi : Ui → R。如果这些函数在重合的地方相等,则我们可以一种唯一的方式把他们粘起来得倒一个连续函数f : U → R,它和所有给定的函数fi一致。所有集合F(U)的类和限制映射F(U) → F(V)成为一个X上的集合的层。进一步的,每个F(U)是一个交换环,而限制映射是环同态,这使F成为X上的环的层。
作为很相似的例子,考虑一个微分流形X,对于X的每个开集U,令F(U)为所有可微函数U → R的集合。这里同样的有粘合,并且我们得到X上的环的层。另一个X上的层是,对于X的每个开集U给定所有定义在U上的可微向量场向量空间。限制和粘合向量场和函数上的操作一样,然后我们得到流形X上的向量空间的层。
形式化定义[编辑]
要定义层,我们分两步进行。第一步是引入预层的概念,它抓住了把局部信息和拓扑空间联系起来的思想。第二步是引入额外的公理,称为粘合公理,它抓住了把局部信息粘合起来得到全局信息的想法。
预层的定义[编辑]
假设X为一个拓扑空间,而C是一个范畴(这经常是集合的范畴,交换群的范畴,交换环的范畴,或是一个固定的环上的的范畴)。一个C中的对象在空间X上的预层(presheaf)由如下数据给出:[/ltr]


  • 对于每个X中的开集,给定C中一个对象FU
  • 对于每个开集之间的包含关系V ⊂ U,给定范畴C中的一个态射resU,V :F(U) → F(V)。这称为限制态射。该限制态射满足以下两点性质:

    • 对于X中每个开集U,我们有resU,U = idF(U),也即,从UU的限制是F(U)上的恒等态射。
    • 给定任何三个开集W ⊂ V ⊂ U,我们有resV,W ○ resU,V = resU,W,也即从UV再到W的限制和从U直接到W的限制相同。




[ltr]
这个定义可以用范畴论的术语很自然的表达。首先我们定义X上的开集的范畴为范畴TopX,其对象是X的开集而其态射为包含映射。TopX就成了和X的开子集上的偏序⊂相关的范畴。一个X上的C预层就是从TopXC反变函子
F是一个X上的C-值预层,而U是一个X的开子集,则F(U)称为FU上的截面。(这是因为和纤维丛的截面相似;参看下面的内容)。若C是一个具体范畴,则F(U)的每个元素称为一个截面F(U)也常记为Γ(U,F)。
粘合公理[编辑]
高层次的讨论请参看主条目粘合公理
层是小开集上面的截面可以粘合成为大开集上的截面的预层。这里粘合公理会以一种要求C为一个具体范畴的形式给出。
U为一个开集族{Ui}的并集。对于每个Ui,选定一个截面在Ui上的fi。我们称fi相容的如果对于每个ij,
resU[sub]i,UiUj[/sub](fi) = resU[sub]j,UiUj[/sub](fj).
直观的讲,如果fi表示函数,这是在说任何两个相容的函数在它们重叠的地方一致。层公理说我们可以从fi产生一个唯一的U上的截面f,其到每个Ui的限制为fi,也即,resU,U[sub]i[/sub](f)=fi。有时,这会分为两个公理,一个保证存在性,而另一个保证唯一性。
例子[编辑]
除了简介中给出的连续函数的层,可微函数的层和向量场的层之外,截面的层也是很重要的例子。假设EX为拓扑空间而π : E → X是一个连续函数。对于X中的每个开集U,令F(U)为使得π(f(x)) = x对于所有U中的x成立的所有连续映射f : U → E的集合。这样的函数f称为π的截面。不难验证FX上集合的层。实际上,每个X上集合的层基本上都是这个类型,对于某一个特殊的映射π来说;参看下面的内容。
给定一个X上的层F on X,F(X)的元素也称为全局截面,这是一个从上面的例子中来的术语。
进一步的例子:[/ltr]



[ltr]
层的态射[编辑]
FGX上两个层,都在范畴C中取值。我们定义从GF态射为一族在范畴C内对于所有在X中的开U的态射φU : G(U) → F(U),它们和限制映射可交换。也就是,下面的图必须可交换[/ltr]

Quantum Field Theory II - 页 3 SheafMorphism-01

[ltr]
对于X中的每一对开集U ⊆ V。若FG视为从TopXC反变函子,则它们之间的态射不过就是一个自然变换(natural transformation)。采用这个定义,所有X上的C-值层构成一个范畴(一个函子范畴)。X上的层的一个同构就是这个范畴里的一个同构。
可以把这个概念推广到不同空间上的层之间的态射。令f : X → Y为一个两个拓扑空间之间的连续函数,并令FX上的层且GY上的层,二者都在C中取值。那么从GF的相对于f的态射为一族态射φU : G(U) → F(f−1(U))对于Y中每个开集U,使得图[/ltr]

Quantum Field Theory II - 页 3 SheafMorphism-02

[ltr]
对于Y中每一对开集U ⊆ V可交换。前面的定义是fX上的恒等映射时的特殊情况。
在一般情况中范畴理论的表述稍微复杂一点。令Top为从拓扑空间范畴Top小范畴范畴Cat的反变函子,它把每个拓扑空间X映到其开集的偏序集范畴TopX。这里Top(f)是一个反变函子,从TopY到TopX,把每个开集映到它的原象。把F和Top(f)复合,我们得到一个从TopYC的反变函子。一个从GF相对于f的态射就是从GF ○ Top(f)的自然变换。
注意上面所有这些对于预层也成立。
层在一点的茎和函数的芽[编辑]
固定X中一点x。我们要研究F在点x附近的行为。在分析术语中,我们要在越来越靠近点x时取某种极限。相应的概念是F(N)在N跑遍x的以包含关系排序的领域时的有向极限(direct limit,用范畴论术语,这是一个余极限(colimit)的例子)。我们把该极限记为Fx并称它为Fx茎(stalk)。如果FX上的C-值层,则茎FxC的一个对象,对于像交换群范畴交换环范畴这样的范畴来说。
对于任意包含x的开集U,存在一个从F(U)到Fx的态射。如果C是一个具体范畴,则应用这个态射到Fx中的一个元素f上就得倒Fx的一个元素,称为fx芽(germ)
这和在数学的其他地方所用的函数的芽的概念对应。直观的讲,函数fx的芽决定了fx的局部行为;它是f的一种幽灵,只在离x很近的地方可以看。参看局部环中给出的详细例子。
对于某些层,芽的行为很好,可以给出好的局部信息;解析函数在一点附近的芽通过它的幂级数扩张决定了函数在一个小领域的取值。但是,有些层行为不好;光滑函数的芽在任意一点都不决定任何一个该点的小领域的函数值。作为一个例子,取任何突起函数(bump function)。它在它为1的区间是常数函数的局部行为,但是知道突起函数在一点附近是常数1并不告诉你函数在哪里开始衰减;从它局部的行为,你甚至不能肯定它是一个突起函数!
层的平展空间[编辑]
层论发展的早期,就证明了给定层X上的F和给定一个特定拓扑空间E以及一个从EX的连续函数一样。更精确的讲:对于一个X上的集合层F,存在一个局域同胚
π: E → X
使得F和上节例子中所述的π的截面层同构。
进一步的有,空间E是确定的,最多差一个F同胚。这是F茎空间:每个茎给了离散拓扑,并且我们取所有茎的不交并,而π把所有的茎Fx映射到x。这个茎的空间的拓扑可以取为这样一个拓扑,它使得层F可以从π截面的层中重建出来。
在高一级的抽象中,我们可以说X上的集合的层的范畴是等价于到X的局部同胚的范畴的。(也可以从可表示函子的理论的角度来考虑这样一个空间;历史表明这个理论也在1950年代中期发展出来)。
在Godement的深具影响的关于同调代数和层论的书中(Topologie Algebrique et Theorie des FaisceauxR. Godement),空间E被称为espace étalé(平展空间);在那本书中,层事实上定义为从局部同胚的截面得到;上面给出的函子方式的定义后来才出现,但现在更为普遍。
上面的考虑对于X上的C层也成立:我们还是从茎的空间出发,每个茎是C中的一个对象,而截面自然也成为C中的对象。
给定任意连续映射g : Z → X,相应的截面的层给了上述方式的茎的空间E和一个局部同胚π : E → X。在某种意义上,这是处理映射g的所有'分支',并且是以'尽可能最好的方式'。这可以用共轭函子表示;但是从某种意义上讲层的更广泛的概念远离了几何直觉。
推广[编辑]
可以定义一个交换群的层的上同调理论(层上同调),它可以给出很多有用的更具体的信息。主要的问题是长正合序列的存在性来自于层的一个正合序列。在应用中,重点曾被放在比有限复空间更不行为良好的空间的层上。例如,代数几何中有Zariski拓扑的空间很少满足豪斯多夫性质。
代数几何的情况最早是Jean-Pierre Serre(塞尔)通过发展Cech上同调的相似物来处理的;这样做可以,但是一般来讲这种构造没有好的性质。然后格罗滕迪克(Alexander Grothendieck)使用全局截面函子的导函子,给出了更权威的解决。
格罗滕迪克想要发展层的一个上同调理论,以得到更强的结果,并且,特别的有,能够允许Weil猜想的证明。通过精确的分析定义层所需的X的性质,他在一个范畴上定义了格罗滕迪克拓扑的概念(这有些兜圈子—参看拓扑斯理论的背景和创立(background and genesis of topos theory))。
有格罗滕迪克拓扑的一个范畴称为一个site(站)。可以在任意站上定义层的概念。站的概念后来导致Lawvere发展出基本拓扑斯的概念。
历史[编辑]
层论最初的起源很难确认—它们可能和解析延拓的思想共存。可以识别的独立的层论才从上同调的基础工作中出现大约花了15年的时间。[/ltr]


  • 1936年Eduard Čech引入神经(Nerve)构造,以将一个简单复形关联到一个开覆盖。
  • 1938年Hassler Whitney给出上同调的一个'现代'定义,归纳了自J. W. AlexanderKolmogorov首次定义余链(cochain)以来的工作。
  • 1943年诺曼·斯廷罗德发表了关于带局部系数的同调类的工作。
  • 1945年Jean Leray发表了作为POW进行的工作,由应用到偏微分方程理论的不动点定理的证明作为其动机;它是层论和谱序列的开始。
  • 1947年昂利·嘉当在和安德烈·韦伊的通信中用层的方法重新证明了德拉姆定理。Leray在他的课程中通过闭集(后来的壳(carapaces))给了一个层的定义。
  • 1948年卡当研讨班首次写下层论
  • 1950年卡当研讨班的层论'第二版':使用了层空间éspace étalé,平展空间)的定义,采用茎方面的结构。支集和有支集的上同调被引入。连续映射导致了谱序列。同时Kiyoshi Oka多复变量中引入和理想的层相似的思想。
  • 1951年嘉当研讨班基于Oka的工作证明了定理A和B]。
  • 1953年一致层的有限性定理在解析理论中由卡当和塞尔证明,塞尔对偶性也得到了证明。
  • 1954年塞尔的论文Faisceaux algébriques cohérents(发表于1955年)把层引入代数几何。这些思想很快为Hirzebruch所采用,他在1956年写了一本拓扑方法的重要著作。
  • 1955年格罗滕迪克堪萨斯的讲演中定义了可交换范畴预层,然后使用单射解决(injective resolution)使得层上同调可以在所有拓扑空间作为导函子直接使用。
  • 1956年扎里斯基(Oscar Zariski)的报告代数层论,第二个夏季学院的科学报告:多复变量[1954年, Boulder (Col.)],第三部,美国数学学会公告, t. 62, 1956年, 117-141页.
  • 1957年格罗滕迪克的Tohoku论文重写了同调代数;他证明了格罗滕迪克对偶性(也即,对于可能有奇点的代数簇的塞尔对偶性)。
  • 1958年Godement关于层论的著作出版。大约同一时间Mikio Sato建议了他的超函数,它具有层论的本质。
  • 1957年以后:格罗滕迪克按照代数几何的需要扩展了层论,引入:概形和其上的一般层,局部上同调导范畴(derived category,与Verdier的共同工作),以及格罗滕迪克拓扑。也出现了他极有影响的同调代数的'六操作'的概形思想。


[ltr]
至此,层成为数学的一个主流部分,其应用根本不局限于代数拓扑。后来层范畴的逻辑被发现是直觉逻辑(该发现现在经常被称为Kripke-Joyal语义,但可能应该归功于一系列作者)。这表明层论的某些方面甚至可以追述到莱布尼兹
参看[编辑][/ltr]



[ltr]
参考[编辑][/ltr]


  • Topologie algébrique et théorie des faisceauxRoger Godement
  • The Theory of Sheaves (University of Chicago Press,1964) R. G. Swan(concise lecture notes)
  • Sheaf Theory (London Math. Soc.Lecture Note Series 20, Cambridge University Press, 1975) B. R. Tennison(pedagogic treatment)
  • Sheaf Theory, 2nd Edition (1997) Glen E. Bredon(oriented towards conventional topological applications)
  • Sheaves in Geometry and Logic (Springer-Verlag, 1992) S. Mac Laneand I. Moerdijk(category theory and toposes emphasised)
  • Topological methods in algebraic geometry (Springer-Verlag, Berlin, 1995) F. Hirzebruch(updated edition of a classic using enough sheaf theory to show its power)
  • Sheaves on Manifolds (1990) M. Kashiwara and P. Schapira (advanced techniques such as the derived category and vanishing cycles on the most reasonable spaces)


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-22, 03:40

Deformation retracts. Let Y be a subspace of the topological space X (i.e, Y
is a subset of X equipped with the subspace topology – see page 243). By definition,
Y is a retract of X iff there exists a continuous map
r : X → Y
with r(y) = y for all y ∈ Y. The map r is called a retraction. Furthermore, Y is
called a deformation retract of X iff there exists a continuous map
H : X × [0, 1] → X
such that the following hold:
• H(x, 0) = x for all x ∈ X,
• H(x, 1) ∈ Y for all x ∈ X, and
• H(y, 1) = y for all y ∈ Y.
This means that the identity map on X (at time t = 0) can be continuously deformed
into a retraction H(. , 1) : X → Y (at time t = 1). For example,
• the midpoint of a disc is a deformation retract of the disc,
• and a fixed boundary circle of an annulus is a deformation retract of the annulus
(Fig. 4.11).
Topologically equivalent topological spaces. Two topological spaces X and
Y are called topologically equivalent iff there exists a homoemorphism
f : X → Y.
Explicitly, this means that the map f : X → Y is continuous and bijective, and the
inverse map f−1 : Y → X is also continuous. We also say that X and Y have the
same topological type iff they are topologically equivalent.
Now let us introduce the weaker notion of homotopically equivalent topological
spaces. Observe that topologically equivalent topological spaces are also homotopically
equivalent, but the conserve is not always true. For example, the interval [0, 1]
is topologically equivalent to any compact interval [a, b] of positive length, but it
is not topologically equivalent to the one-point interval {0}. However, the interval
[0, 1] is homotopically equivalent to {0}.
Homotopically equivalent topological spaces. For two topological spaces,
we write
X ∼ Y
iff there exist two continuous maps f : X → Y and g : Y → X such that we have
the homotopies
g ◦ f ∼ idX and f ◦ g ∼ idY ,
where idX and idY are the identity maps on X and Y , respectively. In other words,
the map g ◦f (resp. f ◦g) can be continuously deformed into the identity map on X
(resp. Y ). We say that f and g are inverse up to homotopy. For topological spaces
X, Y,Z, we have X ∼ X. Moreover, X ∼ Y iff Y ∼ X, and
X ∼ Y, Y ∼ Z implies X ∼ Z.
Consequently, X ∼ Y is an equivalence relation. We say that the topological spaces
X and Y are homotopically equivalent (or the have the same homotopy type) iff
X ∼ Y. The following definitions will be frequently used:
• X is called contractible iff it is homotopically equivalent to a one-point space.
Intuitively, this means that the space X can be continuously contracted into a
point.
• X is called arcwise connected iff the space [S0,X] of mapping classes consists
precisely of one point. Intuitively, this means that two points of X can always
be connected by a continuous curve.
• X is called simply connected iff the space [S1,X] of mapping classes consists
precisely of one point. Intuitively, this means that each closed continuous curve
in X can be continuously contracted into a point.
Examples. (i) For n = 1, 2, . . ., each convex set of Rn is contractible (e.g., an
interval, a disc in R2, or a ball in Rn).
(ii) A disc is arcwise connected and simply connected.
(iii) A circle (or an annulus) is arcwise connected, but not simply connected.
(iv) An annulus is homotopically equivalent to a circle (Fig. 4.11).
(v) If Y is a deformation retract of the topological space X, then Y and X are
homotopically equivalent.

The group π1(X). If the group π1(X, x0) does not depend on the choice of
the base point x0, up to group isomorphism, then we simply write π1(X) instead
of π1(X, x0). In particular, this is the case if the topological space X is arcwise
connected.
The arcwise connected topological space X is simply connected iff the fundamental
group π1(X) is trivial, that is, it consists of precisely one point.
In this case, we briefly write π1(X) = 0. In order to rigorously compute fundamental
groups and higher homotopy groups, one uses exact sequences. This will be
investigated in Vol. IV. Let us mention three examples.
(i) For the circle S1, we get π1(S1) = Z. Regarded as an additive group, we obtain
π1(S1) = Z.
(ii) The 2-dimensional sphere S2 is simply connected, and hence π1(S2) = 0.
(iii) The 2-dimensional torus T2 = S1 × S1: Regarded as an additive group, we get
π1(T2) = Z ⊕ Z.

4.4.6 Loop Spaces and Higher Homotopy Groups
The most intuitively evident topological invariant of a topological space
is the number of connected pieces into which it falls. Over the past one
hundred years or so we have come to realize that this primitive notion
admits in some sense two higher-dimensional analogues. These are the
homotopy and cohomology groups of the spaces in question25. . .
By some divine justice the homotopy groups of a finite polyhedron or a
manifold seem as difficult to compute as they are easy to define . . . To this
day not all the homotopy groups of say the 2-sphere have been computed.26
Raoul Bott and Loring Tu, 1982
We will base our approach to higher homotopy groups on the study of loop spaces.
Intuitively, loops are closed continuous curves. In terms of physics, the transport
of physical information along loops is crucial, since it is possible that the initial
information differs from the final information after one surrounding.
This gain (or loss) of physical information is caused by interactions.
Loops play a fundamental role in gauge theory (e.g., Wilson loops) and in the
Ashtekar program for quantum gravitation (called loop gravity).

The homotopy groups πk(X, x0) with k ≥ 2 are commutative.
The homotopy groups πk(X). If the groups πk(X, x0), k = 1, 2, . . . , do not
depend on the choice of the base point x0, up to group isomorphism, then we simply
write πk(X) instead of πk(X, x0). In particular, this is the case if the topological
space X is arcwise connected.
Mapping classes and homotopy groups. Let the topological space X be
arcwise connected. Then there exist the bijections
[Sk,X]Mapping classes and homotopy groups. Let the topological space X be
arcwise connected. Then there exist the bijections
[Sk,X]同构与  πk(X), k= 0, 1, 2, . . .  πk(X), k= 0, 1, 2, . . .

Theorem 4.16 Homotopically equivalent topological spaces (e.g., homeomorphic
spaces) have the same homotopy groups.

This has the following consequence: Two topological spaces X and Y are not
homotopically equivalent (and hence not homeomorphic) if there exists an index
k = 0, 1, 2, . . . with πk(X) =/= πk(Y ).
Examples. The following homotopy groups are written as additive groups.
(i) Point: If the topological space X consists of precisely one point, then
πk(X) = 0, k= 0, 1, 2, . . .
A contractible space X has the same homotopy groups, since such a space is
homotopically equivalent to a point.
(ii) Unit circle: π1(S1) = Z, and πk(S1) = 0 if k = 0 or k ≥ 2. An annulus or the
su***ce of a cylinder have the same homotopy groups, since these topological
spaces are homotopically equivalent to the unit circle. It follows from π1(S1) = 0
that the unit circle is not contractible.
(iii) 2-dimensional sphere: π0(S2) = π1(S2) = 0 and π1(S2) = π3(S2) = Z. Furthermore,
πk(S2) = Z2 if k = 4, 5, 7, 8, 11, and
π6(S2) = Z12, π9(S2) = Z3, π10(S2) = Z15, π22(S2) = Z132 ⊕ Z2.
(iv) n-dimensional sphere: For n = 1, 2, . . . , we have
πn(Sn) = Z, πk(Sn) = 0, k= 0, . . . , n − 1.
The product theorem. For the Cartesian product X × Y of two topological
spaces X and Y , we get
πk(X × Y, (x0, y0)) = πk(X, x0) × πk(Y, y0), k= 1, 2, . . . ,
in the sense of a direct group product.
Serre’s finiteness theorem. In his 1951 thesis, Serre proved the following
fundamental result: Let m = 0, 1, . . . and n = 1, 2, . . .
With the only exceptions πn(Sn) = Z and π4n−1(S2n), all the homotopy
groups πm(Sn) of spheres are finite.
The exceptional homotopy group π4n−1(S2n) is the direct sum of Z with a finite
group.

4.4.7 Homology, Cohomology, and Electrodynamics
The notions of homology and cohomology are deeply rooted in electrodynamics.
This will be thoroughly studied in Vol. IV. In particular, we will show that the
most simple approach to homology and cohomology groups is related to electrical
circuits. This generalizes then to the Maxwell equations in electrodynamics by using
differential forms and the de Rham cohomology.
4.4.8 Bott’s Periodicity Theorem
I was very fortunate to be the first to notice that the loop space of a Lie
group is very easily attacked with Morse-theoretic methods. It turns out
if you look at the loop space rather than at the group, then the so-called
diagram of the group on the universal covering of its maximal torus plays
an essential role. So you can read off topological properties of the loop
space much more easily from the diagram of the group than you can read
off things about the group itself. . .
During the period 1955–57 there was a controversy in homotopy theory.
The question concerned the homotopy group of the unitary group in dimension
10. The homotopy theorists said it was the cyclic group Z3. The
results of Borel and Hirzebruch predicted it to be 0. This contradiction intrigued
me, and I thought I should be able to say something about it using
Morse-theoretic techniques that Samelson and I had discovered. Finally I
hit upon a very complicated method involving the exceptional Lie group
G2 to check the conundrum independently. My good friend Arnold Shapiro
and I spent all weekend computing. At the end we came out of the side of
Borel and Hirzebruch, so I was convinced that they were right. And if they
were right the table of homotopy groups started to look periodic for a long
stretch. In the odd dimensions they were Z up to nine dimensions, and in
the even dimensions they were 0. So I thought, “Maybe they are periodic
all the way.” And fairly soon after I saw my old ideas would actually do
the job. In this way the unitary group was then settled.
Then I started to think about the orthogonal group, and that was much
harder. But I do remember precisely when I suddenly saw how to deal
with it. That occurred after we had left the Institute in Princeton and
were moving house. In a flash I saw how it all fitted together.
Raoul Bott, 2001
Let U(n) be the group of complex unitary (n × n)-matrices. It is crucial that the
homotopy groups
πk(U(n)), k= 0, 1, 2, . . .
are independent of n if the natural number n is sufficiently large. Explicitly, we need
0 ≤ k < 2n. In this case, we briefly write πk(U). These stable homotopy groups are
completely known. In fact, the fundamental Bott periodicity theorem says that
π0(U) = 0, π1(U) = Z, πk+2(U) = πk(U), k= 0, 1, 2, . . .
This corresponds to the period 2.
Let O(n) be the group of real orthogonal (n × n)-matrices. If n is sufficiently
large, that is, 0 ≤ k < n− 1, then the homotopy groups
πk(O(n))
are independent of n. We briefly write πk(O). These stable homotopy groups are
also completely known. In this case, the Bott periodicity theorem says that
πk+8(O) = πk(O), k= 0, 1, 2, . . .
together with π0(O) = π1(O) = Z2, and
πj(O) = 0, j = 2, 4, 5, 6, πm(O) = Z, m= 3, 7.
This corresponds to the period 8.

4.4.9 K-Theory
K-theory was introduced by Grothendieck in his formulation of the Riemann–
Roch–Hirzebruch theorem in 1958.31 For each projective algebraic
variety, Grothendieck constructed a group from the category of coherent
algebraic sheaves, and showed that it had many nice properties. About
1960, Atiyah and Hirzebruch constructed a topological analog defined for
any compact space X, a group K(X) constructed from the category of
vector bundles on X. . . Topological K-theory has become an important
tool in topology. Using K-theory, Adams and Atiyah were able to give a
simple proof that the only spheres which can be provided with H-space
structures are the spheres of dimension 1, 3, and 7. Moreover, Adams was
able to derive a substantial part of stable homotopy theory from K-theory.
Further applications to analysis are found in the work of Atiyah–Singer
on the index theorem, Quillen, Bass, and others. A key factor in these
applications is the Bott periodicity for Lie groups.32
Max Karoubi, 1978
Semi-rings. Consider the set N of natural numbers 0, 1, 2, . . . Set S := N. Then,
for all m, n, s ∈ S, the following hold.
(S0) Consistency: m + n,mn ∈ S.
(S1) Associativity: (m+ n) + s = m + (n + s) and (mn)s = m(ns).
(S2) Zero element: There exists a uniquely determined element 0 in S with the
property m + 0 = m for all m ∈ S.
(S3) Commutativity: m+ n = n + m and mn = nm.
(S4) Regularity: It follows from m, n ∈ S and m + s = n + s for all s ∈ S that
m = n.
In general, a set S is called a semi-ring iff an addition m+n and a multiplication mn
exist for certain elements of S such that for all m, n, s ∈ S the conditions (S0)–(S2)
are satisfied. The semi-ring is called commutative (resp. regular) iff, in addition,
condition (S3) (resp. (S4)) is satisfied.
The map χ : S → S'from the semi-ring S into the semi-ring S'is called a
semi-ring morphism iff it respects sums and products, that is,
χ(m + n) = χ(m) + χ(n), χ(mn) = χ(m)χ(n) for all m, n ∈ S.
Bijective semi-ring morphisms are called semi-ring isomorphisms.

Perspectives
In the following volumes of this monograph, we will study important applications
of topology to physics.
In quantum physics, one encounters quantum numbers.
This means that crucial quantum phenomena are described by discrete numbers. In
mathematics, one knows two important methods in order to classify mathematical
structures by discrete numbers. This concerns
• symmetry (e.g., the representation theory of groups and algebras), and
• qualitative behavior (topological invariants).
In Vol. IV on quantum mathematics, we will show that these two approaches are
crucial for quantum physics.

4.5 The Strategy of Partial Ordering
Partially ordered sets occur quite often in mathematics.
Folklore
For natural numbers a, b, c, we have the following ordering relations:
(P1) Reflexivity: a ≤ a;
(P2) Symmetry: If a ≤ b and b ≤ a, then a = b.
(P3) Transitivity: a ≤ b and b ≤ c imply a ≤ c.
In general, a set N is called partially ordered iff there is a ≤-relation defined on
certain elements a, b of N such that (P1)–(P3) hold for all a, b, c ∈ N. We write
a < c iff a ≤ b and a = b. Partially ordered sets are also called posets. In addition,
a set N is called totally ordered iff the following hold:
(O1) N is partially ordered;
(O2) we have a ≤ b or b ≤ a for all a, b ∈ N.
For example, both the set of natural numbers and the set of real numbers are totally
ordered. For all (a, b), (c, d) ∈ R2, we define
(a, b) ≤ (c, d) iff a ≤ b and c ≤ d.
This way, R2 becomes a partially ordered set, which is not totally ordered. In fact,
we have neither (1, 2) ≤ (2, 1) nor (2, 1) ≤ (1, 2). Furthermore, for a poset N and
its subsets S, we introduce the following terminology:
• Maximal element of N: An element m of N is called maximal iff there is no
element a in N with m < a. Similarly, an element m of N is called minimal iff
there is no element a in N with a < m.
• Greatest element of N: An element g of N is called greatest iff a ≤ g for all
a ∈ N. Similarly, an element s of N is called smallest iff s ≤ a for all a ∈ N.
• Upper bound of the subset S: The element b ∈ N is called an upper (resp. lower)
bound of the subset S of N iff a ≤ b (resp. b ≤ a) for all a ∈ S.
• Supremum sup(S) of the subset S: The supremum of S is the smallest upper
bound of S. We denote this by sup(S).
• Infimum inf(S) of the subset S: The infimum of S is the greatest lower bound of
S. We denote this by inf(S). If sup(S) (resp. inf(S)) exists, then it is unique.
• Well-ordering: The set N is well-ordered iff it is totally ordered and each
nonempty subset of N has a smallest element.
• Lattice: The set N is called a lattice iff it is partially ordered and the supremum
sup({a, b}) and the infimum inf({a, b}) exist for each two-point subset {a, b} of
the set N.
• Complete lattice: The set N is called a complete lattice iff the supremum sup(S)
and the infimum inf(S) exist for each nonempty subset S of N.
For the theory of lattices, we refer to:
G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1968.
Examples. Each interval of the real line is an ordered set. The interval ]0, 1] has
the point x = 1 as greatest element, but this interval has no smallest element. As a
subset of the real line, the interval ]0, 1] has the point x = 1 as supremum and the
point x = 0 as infimum. The real line is a lattice, but not a complete lattice, since
the set R has neither a supremum nor an infimum.

4.5.2 The Abstract Entropy Principle in Thermodynamics
Our goal is an assertion of the form
s ≤ a implies S(s) = S(a). (4.35)
Theorem 4.24 Let S : X → [−∞,∞[ be a monotone increasing function on the
nonempty partially ordered set X, that is, a ≤ b implies S(a) ≤ S(b). In addition,
suppose that each monotone increasing sequence in X has an upper bound. Then
there exists an element s of X with the stability property (4.35) for all a ∈ X.
This theorem due to Br´ezis and Browder allows the following physical interpretation:
39 We regard the elements a of X as states of a many-particle system
in physics. The function S assigns to the state a the entropy S(a). The ordering
relation a ≤ b means that the state a may pass to the state b at later time. Thus,
a monotone increasing sequence a1 ≤ a2 ≤ . . . corresponds to a possible time development
of the physical system with the corresponding increasing entropy values
S(a1) ≤ S(a2) ≤ . . . ,
by the second law of thermodynamics. Theorem 4.24 tells us the existence of a
stable equilibrium state s in the following sense: If the system is in the state s, then
the entropy can no longer increase.

4.5.3 Convergence of Generalized Sequences
In general topological spaces, classical sequences are not enough for the
characterization of closed sets by convergence.
Folklore
Directed index set. In classical analysis, a sequence (xn) is equipped with an
index n = 0, 1, 2, . . . which lies in the set N = {0, 1, 2, . . .} of natural numbers. In
modern analysis (e.g., the theory of von Neumann algebras), one needs sequences
(xν) where the index ν lies in a more general directed set N. By definition, a set
N is called directed (or a generalized index set) iff the following hold:
(D1) N is partially ordered.
(D2) If a, b ∈ N, then there exists an element d in N such that a ≤ d and b ≤ d.
For example, both the set of natural numbers and the set of real numbers are
directed. Moreover, let X be an arbitrary set. Then the family {U(x)} of all the
subsets U(x) of X which contain the given point x forms a directed set by the
convention
U(x) ≤ V (x) iff V (x) ⊆ U(x).
Note that U(x), V (x) ≤ U(x)∩ V (x). We say that the family {U(x)} is directed by
inverse inclusion.
Generalized sequence. Let X be a separated topological space, and let N be
a directed set.40 By definition, a generalized sequence (xν) in the topological space
X is a map which assigns to each index ν in N an element xν in X. Obviously,
every classical sequence (xn) with natural numbers n as indices is a generalized
sequence. For a generalized sequence (xν), we write
ν→∞limxν = x (4.36)
iff for each open neighborhood U(x) of the point x, there exists an index ν0 such
that xν ∈ U(x) for all indices ν with ν0 ≤ ν. The following statements hold:
(a) Fix the point x in X. Consider the sequence (xU(x)), where the index U(x) is
an arbitrary open neighborhood of the point x, and xU(x) is some point of the
set U(x). Then the point x is the limit of the sequence (xU(x)).
(b) A subset C of the topological space X is closed iff for each generalized sequence
(xν) in C it follows from (4.36) that x ∈ C.
(c) In particular, if X is a metric space (e.g., a subset of Rm or of a Hilbert space),
then statement (b) remains valid if we only use classical sequences.
(d) The generalized limit is unique (in a separated space).
For the proofs, see
J. Kelley, General Topology, van Nostrand, New York, 1955.
This monograph contains a systematic theory of generalized sequences. A summary
(including the theory of metric and topological spaces, Hilbert spaces, Banach
spaces, and locally convex spaces) can be found in Zeidler (1986), Vol. I, Appendix
(see the references on page 1049). Generalized sequences are important for characterizing
von Neumann algebras in quantum mechanics (see Sect. 7.18 on page 654).
Generalized sequences are also called Moore–Smith sequences or nets.

A map f : X → Y between two topological spaces X and Y is continuous
iff the pre-images of open sets are open.
Basis of a topology. Let X be a topological space with the topology T . A
family B of open subsets of X is called a basis of the topology T iff any open subset
of X is the union of sets from B.
Subbasis of a topology. Again let X be a topological space with the topology
T . A family S of open subsets of the topological space X is called a subbasis of
the topology T iff all the finite intersections of the sets from S form a basis of the
topology T . We also say that the family S generates the topology T iff it forms a
subbasis of T .
As an example, consider the real line R equipped with the usual topology. Then
the family of all open intervals together with the empty set form a basis of the
topology on R. Moreover, the family of all open intervals of infinite length forms
a subbasis of the topology on R. This follows from the fact that each finite open
interval can be represented as the intersection of two open intervals of infinite
length.
Comparison of topologies. Let T and S be two topologies on the set X.
Suppose that
T ⊆S.
Then the topology T is called weaker than the topology S, and S is called stronger
than T . Let F be a family of subsets of X with X ∈ F and ∅ ∈ F.
There exists a uniquely determined weakest topology T on X with the property
F ⊆T .
Explicitly, a subset Y of X is contained in T iff it is the union of finite intersections
of sets from F. In other words, the family F is a subbasis of the topology T (i.e.,
the family F generates the topology T ).
In addition, the family F is a basis of the topology T iff it is invariant under
finite intersections.
Inductive topology. We are given the family of maps
iα : Xα → Y, α ∈ A (4.37)
on the topological spaces Xα. We want to introduce a nontrivial topology on the
target space Y such that all the maps iα are continuous.
There exists a uniquely determined strongest topology on the target space
Y such that all the maps (4.37) are continuous.
This topology is called the inductive topology on the target space Y with respect
to the family {iα}α∈A of maps.
The notion of limit for sequences in a topological space can be generalized
to the limit of mathematical structures (e.g., linear spaces, groups,
topological spaces).
Folklore

4.5.6 Classes, Sets, and Non-Sets
A traveller who refuses to pass over a bridge until he has personally tested
the soundness of every part of it is not likely to go far; something must be
risked, even in mathematics.
Horace Lamb (1849–1934)
On the 7th of December 1873, the theory of sets left behind forever its
age of innocence, for on that day Georg Cantor (1845–1918) proved that
the set of real numbers is uncountable. . . In 1901 Bertrand Russel (1872–
1970) discovered the inconsistency of the comprehension axiom (Russel’s
antinomy). . . In 1908 Ernst Zermelo (1871–1953) proposed a system of
axioms for set theory which heralded a new approach. . .
By a theorem of mathematical logic, proved in 1931 by Kurt G¨odel (1906–
1978), the consistency of the set-theoretic axiom systems cannot be proved
without methodological means beyond those they represent.
Heinz-Dieter Ebbinghaus, 1995.
No one should ever drive us from the paradise which Cantor (1845–1918)
created for us.
David Hilbert (1862–1943)
The theory of sets was created by Georg Cantor. This was motivated by the question
about the uniqueness of the trigonometric Fourier expansion in the case where
the convergence of the Fourier series is violated in an infinite number of points.
This way, Cantor was led to the study of the structure of infinite sets. In about
1900 mathematicians were shocked by discovering contradictions in set theory. For
example, in 1901 Russel showed that the notion ‘set of all sets’ is contradictory. A
detailed discussion of this antinomy (and the different axiomatic ways of avoiding
this difficulty due to Zermelo–Fraenkel and von Neumann–Bernays–G¨odel) can be
found in the article by Ebbinghaus (1995) quoted above.
Von Neumann’s idea of classes. In 1925, the young John von Neumann
(1903–1957) showed how to avoid such contradictions. He introduced the notion of
class. By definition, a class is a collection of objects.
• A class is called a set iff it can be the element of some class.
• A class is called a non-set iff it can never be an element of a class.
Thus, sets can be gathered into collections. Non-sets, intuitively speaking, are so
large that they cannot be gathered into larger collections. For example, the class U
of all sets is a non-set. This class is called the universe. Moreover, the class of all
linear spaces (or groups, rings, fields, Hilbert spaces, topological spaces) is a nonset.
Intuitively, the class of linear spaces cannot be a set, since there exist linear
spaces of arbitrarily high cardinality. The rigorous approach to classes has to be
based on axioms. A detailed study can be found in:
D. Klaua, General Set Theory, Akademie-Verlag, Berlin, 1964, Vols. 1, 2
(in German).
We also recommend the article on set theory by Ebbinghaus (1995) quoted above
and the following books:
A. Fraenkel, Y. Bar-Hillel, and A. L´evy, Foundations of Set Theory, North-
Holland, Amsterdam, 1973.
K. Devlin, The Joy of Sets: Fundamentals of Contemporary Set Theory,
Springer, New York, 1997.
The axioms are the starting point; they formulate formal terms like ‘class’, ‘set’,
and ‘non-set’ together with formal relations and operations between them. Pierre
Cartier writes:
A very important feature of an axiomatic system in mathematics is its noncontradiction;
after G¨odel’s work in 1931, we have lost the initial hopes to
establish the non-contradiction of mathematics by a formal reasoning, but
one can live with a corresponding belief in non-contradiction.
The outstanding philosopher and mathematician Bertrand Russel (1872–1970) remarked:
Thus mathematics may defined as the subject in which we never know
what we are talking about, nor whether what we are saying is true.
Zermelo’s axiom of choice. One of the cornerstones in the foundations of
class theory is the sophisticated axiom of choice, which reads as follows for the
universe U:
There exists a map C : U → U such that the image C(S) of any nonempty
set S is equal to some one-point set {s} where s is an element of S.
Intuitively, the map C selects precisely one element s from each nonempty set S.
Therefore, C is called a selection map. The axiom of choice first formulated by
Zermelo (1871–1953) in 1908 seems to be trivial, but it is not trivial at all. One of
the surprising results of set theory is the fact that the axiom of choice is independent
of the remaining axioms of set theory. That is, one can postulate either the validity
or the non-validity of the axiom of choice.47
In the present series of monographs, we will use classes, and we will always
assume that the axiom of choice is valid.
Most of mathematicians use this convention. As a consequence, we will have the
lemma of Zorn at hand, as a general existence principle in mathematics. A typical
application of Zorn’s lemma will be considered in Problem 4.10 on page 259. From
a pragmatic point of view, the lemma of Zorn is an extremely useful tool in mathematics.
Therefore, we do not want to loose this gadget. The axiom of choice has
the following consequences which are very far from common sense:
(i) The existence of non-measurable sets: There exist an infinite number of subsets
of the real line which are not measurable in the sense of Lebesgue. In other
words, the elementary pre-measure for intervals on the real line cannot be
extended to a translation-invariant measure on the real line which allows us to
assign a measure to all subsets of the real line.
(ii) Cantor’s well-ordering principle: Any set can be well-ordered.
(iii) Obviously, the set of real numbers is not well-ordered with respect to the
usual ordering. For example, the open interval ]0, 1[ has no smallest element.
However, by (ii), there exists another (highly abstract) total ordering on the
real line for which the real line is well-ordered.
For the proof of (i), see E. Stein and R. Shakarchi, Princeton Lectures in Analysis
III: Measure Theory, p. 24, Princeton University Press, 2003. The proof of (ii) can
be based on Zorn’s lemma (see N. Dunford and J. Schwartz, Linear Operators, Vol.
I, Sect. I.2.9, Wiley, New York, 1958).

4.5.7 The Fixed-Point Theorem of Bourbaki–Kneser
Theorem 4.25 The map f : N → N on a nonempty partially ordered set N
has a fixed-point (i.e., the equation f(x) = x has a solution) if the following two
conditions are satisfied:
(i) x ≤ f(x) for all x ∈ N.
(ii) Each nonempty totally ordered subset of N has a supremum.

4.5.8 Zorn’s Lemma
Theorem 4.26 A nonempty partially ordered set contains a maximal element if
each nonempty, totally ordered subset has an upper bound.
This is one of the most important existence principles in mathematics. The
proof of this theorem follows from the Bourbaki–Kneser theorem and the axiom
of choice. This proof can be found in Zeidler (1986), Vol. I, p. 511. Next we want
to show how non-standard analysis can be based on Zorn’s lemma by constructing
ultrafilters.
4.6 Leibniz’s Infinitesimals and Non-Standard Analysis
Extend the field R of classical real numbers to the field ∗R of generalized
real numbers in order to get infinitesimal numbers and infinite numbers.
Folklore
Non-standard analysis was introduced by Abraham Robinson (1918–1974) in 1960.
The goal of non-standard analysis is to rigorously justify the elegant Leibniz calculus
of infinitesimals. In particular, we will prove that a classical real function f : R → R
has the classical derivative f‘(x) at the point x iff the difference
df (x)/dx− f’(x)
is an infinitesimal number for all nonzero infinitesimal numbers dx. Here, we use
the Leibniz differential
df (x) := f(x + dx) − f(x).
The point is that the differential quotient df(x)/dx is indeed a quotient, in the strict
algebraic sense, between the generalized numbers df (x) and dx. In addition, we have
to show that the expression f(x + dx) makes sense. To this end, we will uniquely
extend the classical function f : R → R to a function
f : ∗R → ∗R,
where ∗R contains the non-standard numbers x + dx. The point is that the totally
ordered field ∗R is an extension of the classical totally ordered field R.


由一星于2014-08-23, 06:27进行了最后一次编辑,总共编辑了12次
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-22, 12:42

[ltr]分类“同伦论”中的页面
以下14个页面属于本分类,共14个页面。[/ltr]





*

C

D

J















分类






同伦[编辑]

(重定向自同伦


Quantum Field Theory II - 页 3 220px-Homotopy_between_two_paths.svg

Quantum Field Theory II - 页 3 Magnify-clip
两条路径的同伦

[ltr]
在数学中,同伦的概念在拓扑上描述了两个对象间的“连续变化”。[/ltr]




[ltr]目录
  [隐藏[/ltr]






[ltr]

函数的同伦[编辑]
给定两个拓扑空间 Quantum Field Theory II - 页 3 C0d0bafa786ddace7cb3a8a209484454 和 Quantum Field Theory II - 页 3 450d2dc6fe8d5f78058c817a8dea51ec。考虑两个连续函数 Quantum Field Theory II - 页 3 6a1b817195a225d9dbe32ad9b802c8fb,若存在一个连续映射 Quantum Field Theory II - 页 3 678f38ea0cd6420b94118ea72e528cf0 使得[/ltr]





  • Quantum Field Theory II - 页 3 56308124f0275a835e0d278428fa7a27
  • Quantum Field Theory II - 页 3 1f03a7108330a385a815b1fda4183494


[ltr]
则称Quantum Field Theory II - 页 3 5cd1b4984855534d0f27f92baff950bd(在Quantum Field Theory II - 页 3 57cec4137b614c87cb4e24a3d003a3e0里)同伦。
换言之:每个参数Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e对应到一个函数 Quantum Field Theory II - 页 3 Cc32a9a8d2ef5df3cdfd018ecc8d08a5 ;随着参数值Quantum Field Theory II - 页 3 D88b8f97ff8ee3cf14cd03de68312c3e从 0 到 1 变化,Quantum Field Theory II - 页 3 2c629235daf48b8ccce8241024fd3195 连续地从 Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62变化到Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba
另一种观点是:对每个Quantum Field Theory II - 页 3 04f6d3ee94eb3ccf99e16ae9a36cdb94,函数 Quantum Field Theory II - 页 3 2c629235daf48b8ccce8241024fd3195 定义一条连接 Quantum Field Theory II - 页 3 8dfae20000a042d8e9047aad1d7e171e 与 Quantum Field Theory II - 页 3 7f8c85be0f2968034d8154277ea37327的路径:
Quantum Field Theory II - 页 3 E4b18e2fbb25bc9fb2319fe5a53b95cd
例一:取 Quantum Field Theory II - 页 3 56af490a0a7421b1e6f8f896831b196aQuantum Field Theory II - 页 3 3862cddc35de2877f956c56c6489b5b0Quantum Field Theory II - 页 3 0c0d0b0cfe6c661e55d7ec168c6f32f9 及 Quantum Field Theory II - 页 3 Ec648c20d431a082c6e3e832867256cf。则Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62 与 Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba 透过下述函数在 Quantum Field Theory II - 页 3 450d2dc6fe8d5f78058c817a8dea51ec 中同伦。
Quantum Field Theory II - 页 3 D52d5bd140095f7bc5dda519c890166f(注意到此例子不依赖于变量 Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6,通常并非如此。):“在Quantum Field Theory II - 页 3 57cec4137b614c87cb4e24a3d003a3e0中同伦”的说法提示一个重点:在例一中若将Quantum Field Theory II - 页 3 3862cddc35de2877f956c56c6489b5b0代为子空间Quantum Field Theory II - 页 3 174e78240bcfcfea346188c09cd12c91,则虽然Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62 与 Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba仍取值在Quantum Field Theory II - 页 3 E880fb1644f768a71a7361a620e7af68,但此时它们并不同伦。此点可藉中间值定理验证。
例二:取Quantum Field Theory II - 页 3 Fc858ecf7dce75a89828944e7068fae2Quantum Field Theory II - 页 3 7c5fa5ced81a182b441bfc4ecee37427Quantum Field Theory II - 页 3 6a37322cc4eb0886fac067cba243e0b3 及 Quantum Field Theory II - 页 3 0b27f1130a4e7cfa2a46c8d4c2daed64Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62描绘一个以原点为圆心之单位圆; Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba停在原点。Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62 与 Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba 透过下述连续函数同伦:
Quantum Field Theory II - 页 3 7ecb8cdb764f47cc3410503b1d3a46bb几何上来看,对每个值Quantum Field Theory II - 页 3 D88b8f97ff8ee3cf14cd03de68312c3e,函数Quantum Field Theory II - 页 3 E36d9356bddac08b7cf1fb303b2383e2描绘一个以原点为圆心,半径 Quantum Field Theory II - 页 3 Efe23518da49922aba72656d6cb957bf 的圆。
函数间的同伦是Quantum Field Theory II - 页 3 7003fab0d9a9eb8be9e438dde5348bc6(即从 X 到 Y 全体连续函数的集合)上的等价关系。同伦的初步应用之一,是借由环路的同伦定义何谓单连通
相对同伦[编辑]
为定义高阶基本群,必须考虑相对于一个子空间的同伦概念。这是指能在不变动该子空间的状况下连续变化,正式定义是:设Quantum Field Theory II - 页 3 D7c3b434359db9a133973a4ef92983be是连续函数,固定子空间 Quantum Field Theory II - 页 3 76f888f6cf082c62e43e6e9e37093f1e;若存在前述同伦映射 Quantum Field Theory II - 页 3 9315b882fcfd50d8f6785e3cdda4a877,满足:[/ltr]





  • Quantum Field Theory II - 页 3 C715c1b811fed4ba996a87cd2ec19a3f
  • Quantum Field Theory II - 页 3 5ae6175071c03a4473be38e203d60545


[ltr]
则称 Quantum Field Theory II - 页 3 9049a848dae63b78d444bb938a7de466 相对于 Quantum Field Theory II - 页 3 A5f3c6a11b03839d46af9fb43c97c188 同伦。若取 Quantum Field Theory II - 页 3 41ff526861037fea6c7a00b79c15064c,则回到原先的同伦定义。
空间的同伦等价[编辑][/ltr]




Quantum Field Theory II - 页 3 Mug_and_Torus_morph

Quantum Field Theory II - 页 3 Magnify-clip
空间的连续变化:咖啡杯与甜甜圈

[ltr]
给定两个拓扑空间Quantum Field Theory II - 页 3 801dd8e49c12855a8fb959ec5fe215ee 与 Quantum Field Theory II - 页 3 B13be40341fd44a1f4b363313147aeb7,我们称之同伦等价(或称具相同伦型),当且仅当存在两个连续映射Quantum Field Theory II - 页 3 91cfd6efe76c8d4f3c3f2819ddc40384Quantum Field Theory II - 页 3 8bb009ddba78a50f8a53d80bad135580,使得:[/ltr]





  • Quantum Field Theory II - 页 3 26130dd391c9ab9e97596c9925e5fb52 同伦到 Quantum Field Theory II - 页 3 801dd8e49c12855a8fb959ec5fe215ee 的恒等映射 Quantum Field Theory II - 页 3 7ddc059c3303cef5cfb23070740e7bf8
  • Quantum Field Theory II - 页 3 9f74f8fa40ec0c150b48c7f0d1af01d0 同伦到 Quantum Field Theory II - 页 3 B13be40341fd44a1f4b363313147aeb7 的恒等映射 Quantum Field Theory II - 页 3 72a81a5ab488a973e84c80499e923333


[ltr]
同胚蕴含同伦,反之则不然,详见以下例子:
例三:[/ltr]





  • 一个平面上的圆或椭圆同伦等价到Quantum Field Theory II - 页 3 4487ce1820c3312016696068775a1dcd,即去掉一点的平面。
  • 线段Quantum Field Theory II - 页 3 8b596d04e319e05cadcc7dcf251a9815、闭圆盘及闭球间两两同伦等价,它们皆同伦等价于一个点。


[ltr]
同伦等价是个拓扑空间之间的等价关系。许多代数拓扑学里的性质均在同伦等价下不变,包括有:单连通同调群上同调群等等。
同痕[编辑]
同痕是同伦的加细版;我们进一步要求所论的函数Quantum Field Theory II - 页 3 A059546ea0e713c26742250fc66a2823 和 Quantum Field Theory II - 页 3 D1909da09962975522142da9390b35a6 是同胚,并要求两者间可用一族同胚映射相连。
定义如次:Quantum Field Theory II - 页 3 Ec4e9dfbb8e117197c3d4727c19b1a62 与 Quantum Field Theory II - 页 3 9a7fcedb27a744e988513390bd263fba被称为同痕的,当且仅当存在连续映射Quantum Field Theory II - 页 3 678f38ea0cd6420b94118ea72e528cf0使之满足:[/ltr]





  • Quantum Field Theory II - 页 3 56308124f0275a835e0d278428fa7a27
  • Quantum Field Theory II - 页 3 1f03a7108330a385a815b1fda4183494
  • 对所有Quantum Field Theory II - 页 3 Bfa0f1f24a438981cb0253c333596893,映射Quantum Field Theory II - 页 3 E36d9356bddac08b7cf1fb303b2383e2是个同胚映射。


[ltr]
同痕的概念在纽结理论中格外重要:若两个结同痕,则我们视之相等;换言之,可以在不使结扯断或相交的条件下彼此连续地变形。
参见[编辑][/ltr]






分类




基本群[编辑]





[ltr]在代数拓扑中,基本群(或称庞加莱)是一个重要的同伦不变量。带点拓扑空间的基本群是所有从该点出发的环路的同伦等价类,群运算由环路的衔接给出。
基本群能用以研究两个空间是否同胚,也能分类一个连通空间覆叠空间(至多差一个同构)。
基本群的推广之一是同伦群。[/ltr]



[ltr]目录
  [隐藏[/ltr]




[ltr]

直观诠释:二维环面的情形[编辑][/ltr]

Quantum Field Theory II - 页 3 180px-Fundamental_group_torus1

Quantum Field Theory II - 页 3 Magnify-clip
二维环面上由p点出发的环路

[ltr]
首先,让我们考虑二维环面(或甜甜圈面)的例子作为热身,固定其上一点Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a
从此点出发,则可以建构环路(即:从Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a出发的并回到Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a的闭曲线)。设想环路如橡皮筋可自由变形与拉长,只要起点与终点仍是Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a 且环路仍处在环面上即可。这种变形叫做同伦,若一环路可以从另一环路借此变形而得到,则称两者同伦等价。我们只探讨环路的同伦类。二维环面的基本群由环路的同伦类组成。[/ltr]

Quantum Field Theory II - 页 3 180px-Fundamental_group_torus2

Quantum Field Theory II - 页 3 Magnify-clip
ab非同伦等价

[ltr]
在上图中,Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661Quantum Field Theory II - 页 3 92eb5ffee6ae2fec3ad71c777531578f并非同伦等价:无法连续地从一者变换到另一者而不将环路“扯断”,它们代表基本群中的不同元素。借着增加环绕圈数,可以获得更多的同伦类。[/ltr]

Quantum Field Theory II - 页 3 180px-Fundamental_group_torus3

Quantum Field Theory II - 页 3 Magnify-clip
ab两条环路的衔接

[ltr]
顾名思义,基本群不只是一个集合,它带还有结构:二元运算由环路的衔接给出,即先走完第一条环路,再走第二条环路,使得两段环路上的速率相同。基本群中的单位元素Quantum Field Theory II - 页 3 F99efd2a381f7f15792329f08ca5295e由静止在Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a点的环路代表,逆元由环路的逆行代表之,即:若一元素由环路Quantum Field Theory II - 页 3 E4f354f874f9c83028305857a387ab3b代表,则其逆元由Quantum Field Theory II - 页 3 0a02f0976f08cad24e968848481d1ac8代表,其中Quantum Field Theory II - 页 3 Da2af906f6c4c88f3e558eee7f0a6e08
形式定义[编辑]
Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383拓扑空间Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a为其中定点。一条连续道路是一个连续映射Quantum Field Theory II - 页 3 6a93ee738c9209cbd6e030f37a084689,而一个以Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a为基点的环路是一条满足Quantum Field Theory II - 页 3 20215cc5f8ca48112e1a6d152edfd6bf的连续道路。以下若不另外说明,则环路皆以Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a为基点。
对两条环路Quantum Field Theory II - 页 3 3403c9fb78adc91d2a3a133b7497505c,如果存在一个连续函数(保持基点的同伦Quantum Field Theory II - 页 3 C4cb0aa2b1da5de9415f4631ef9f083b使得[/ltr]


  • Quantum Field Theory II - 页 3 B5892f539a11f90d57098f18f05b42af
  • Quantum Field Theory II - 页 3 33df61e4386ad0ac403ca9ccb5f2a206
  • Quantum Field Theory II - 页 3 C289d9ba6960bc2843d8377d4b4afd1b


[ltr]
则称两者同伦等价。不难验证此关系确为等价关系。因此我们可考虑环路对此关系的等价类,以Quantum Field Theory II - 页 3 0af9538e5a6a88e7d99837db0508aaa0表一环路Quantum Field Theory II - 页 3 334de1ea38b615839e4ee6b65ee1b103隶属的等价类,亦称同伦类。
现在定两条环路Quantum Field Theory II - 页 3 9049a848dae63b78d444bb938a7de466的衔接为: Quantum Field Theory II - 页 3 Da63316d45503513567d279b6f32b22f
直观地说,此环路是先走Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7再走Quantum Field Theory II - 页 3 B2f5ff47436671b6e533d8dc3614845d,每一段都将速度加倍,以在单位时间内走完全程。可证明Quantum Field Theory II - 页 3 44d5e57be536bd4b3b0e381e32d480cb决定于Quantum Field Theory II - 页 3 4da64b977f442213c9bdd25cb3dbcc1e,因此可在环路的同伦类上定义二元运算“*”。不难看出此运算满足结合律
令单位元Quantum Field Theory II - 页 3 F99efd2a381f7f15792329f08ca5295e为环路Quantum Field Theory II - 页 3 Aae025e83fcaa7a78ec67e98f2e3fa44(即静止于Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a点的环路),并令环路Quantum Field Theory II - 页 3 C0375f33212c6950e8b7f63cef85383e之逆为Quantum Field Theory II - 页 3 E07c9cb09ddcd5b792159ac29a72e85e(即Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7逆行)。可证明Quantum Field Theory II - 页 3 Eff00b6d8817be14bd9a4990b8b73d60在同伦类上有明确定义,且同伦类在此运算下成为一个
此群称为Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383在基点Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47a基本群,表为Quantum Field Theory II - 页 3 21e22fed2d895077e4f9abbef2229a12
例子[编辑][/ltr]


  • Quantum Field Theory II - 页 3 D2032d2e7db474bc8337d1e498d1a045对任何基点的基本群皆为平凡群。换言之,每个环路都可以连续地变形到基点。这类空间称为单连通空间。
  • Quantum Field Theory II - 页 3 5d5f448f1528508f27683f57c3c34111时,Quantum Field Theory II - 页 3 E3f042f4361cd9f39a048c78a461aa78为单连通。
  • 圆环Quantum Field Theory II - 页 3 6a716c8756568df04c973bd32538760e之基本群为Quantum Field Theory II - 页 3 812b3f5a051a22b060fbc64deea076db。其元素一一对应于Quantum Field Theory II - 页 3 81727f16177edefaeee983ef4756e5d8,其中Quantum Field Theory II - 页 3 49dead83680fb55fba0053eebdefcd1b表示环路绕行圆环的次数(计入方向);群运算由Quantum Field Theory II - 页 3 Ab386af083958792de9ad9e1eea169fd给出。一般而言,Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1维环面的基本群同构于Quantum Field Theory II - 页 3 Acc22b7d079cd7d6253ac39261bb65fe
  • 基本群也可能含挠元:例如射影平面Quantum Field Theory II - 页 3 F60cb13528ad22371b6d7cb5ec259e4d的基本群便同构于Quantum Field Theory II - 页 3 E060d0e293e8e1c7652a360866c6f997
  • 基本群不一定可交换:例如挖去两点的平面Quantum Field Theory II - 页 3 886640c3cb4dbb95eef448e2bf87f9d1的基本群同构于两个生成元的自由群,生成元分别对应于绕行Quantum Field Theory II - 页 3 0cc175b9c0f1b6a831c399e269772661Quantum Field Theory II - 页 3 92eb5ffee6ae2fec3ad71c777531578f的环路。


[ltr]
事实上,可以证明对任何群Quantum Field Theory II - 页 3 Dfcf28d0734569a6a693bc8194de62bf皆存在一个拓扑空间,使其基本群同构于Quantum Field Theory II - 页 3 Dfcf28d0734569a6a693bc8194de62bf(此空间可以用二维CW复形构造,当群为有限展示时则能以四维流形构造)。
基本性质[编辑]
对基点的独立性[编辑]
以下设Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383道路连通空间。Quantum Field Theory II - 页 3 4d45b2b0840c520abec23826c8dbd58a,则Quantum Field Theory II - 页 3 21e22fed2d895077e4f9abbef2229a12同构于Quantum Field Theory II - 页 3 26deac16f2cf0b769a46e61ae4741e5a。这是因为存在一条从Quantum Field Theory II - 页 3 83878c91171338902e0fe0fb97a8c47aQuantum Field Theory II - 页 3 7694f4a66316e53c8cdd9d9954bd611d的道路Quantum Field Theory II - 页 3 334de1ea38b615839e4ee6b65ee1b103,依之定义映射
Quantum Field Theory II - 页 3 9e3aa5b9c8c0ee9f51f4354bfa871451
此映射给出从Quantum Field Theory II - 页 3 26deac16f2cf0b769a46e61ae4741e5aQuantum Field Theory II - 页 3 21e22fed2d895077e4f9abbef2229a12的同构,其逆则为
Quantum Field Theory II - 页 3 0f8ebc9b39a63292189fce63977423b2
由此可谈论空间本身的基本群(顶多差一个同构),记为Quantum Field Theory II - 页 3 9ebd52f4e90886bd19675c621ed96bfd基本广群理论也'可以简练地解释基本群对基点的独立性。
对连续映射的函子性[编辑]
Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7为空间Quantum Field Theory II - 页 3 Faa8ba18d4cd8dcd3b670a45a722bf66同伦等价,则Quantum Field Theory II - 页 3 1fe01c4ace6ecbb077b121d6b1078726为同构。
推论.同胚的空间有相同的基本群。
积空间的基本群[编辑]
Quantum Field Theory II - 页 3 53a6913b9cab9bdcf369f3175be477ed
与第一个同调群的关系[编辑]
道路连通空间的第一个同调群是基本群的交换化。这是Hurwitz定理的特例。
计算方法与应用[编辑]
范坎彭(van Kampen)定理[编辑]
基本群一般不易计算,因为须证明某些环路非同伦等价。当空间可分割为较单纯的空间,而其基本群已知时,范坎彭定理(或塞弗特-范坎彭(Seifert-van Kampen)定理)可以将基本群表为一个归纳极限
锥定理与射影空间的基本群[编辑]
对一个拓扑空间Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383,定义其“锥”Quantum Field Theory II - 页 3 D8e29d1bfff1d2d58ee98e24ce4f335d,其中Quantum Field Theory II - 页 3 Dd7536794b63bf90eccfd37f9b147d7f表闭区间Quantum Field Theory II - 页 3 Ccfcd347d0bf65dc77afe01a3306a96b。当Quantum Field Theory II - 页 3 5e8639748755d2891793f64c6e68470c时,Quantum Field Theory II - 页 3 833e36d1a5a93dedb10c85f50ced9ce7同胚于圆锥。
道路连通空间的锥是单连通的,我们也有自然包含映射Quantum Field Theory II - 页 3 819ae0408019f03e54d3351fc0768d21
Quantum Field Theory II - 页 3 52d50404f827bbeee59ac8a21a1378b5为连续映射,定义映射锥为
Quantum Field Theory II - 页 3 2150e33975ae8cb3b634c33538e80d79
例子:设Quantum Field Theory II - 页 3 8fa14cdd754f91cc6554c9e71929cce7Quantum Field Theory II - 页 3 E8ec927f8588d7d7e51f546868e790b3到自身的映射Quantum Field Theory II - 页 3 856b25e6b3047ab25a7450c290f1c2b2,此时Quantum Field Theory II - 页 3 D425f1b024b6c9bcd0ad0c0c43a5b0ee
锥定理断言Quantum Field Theory II - 页 3 010dfad868e4db1f46382a085599dcf1的基本群同构于Quantum Field Theory II - 页 3 C56530fa27432e390ea55970055a7366Quantum Field Theory II - 页 3 46ec0154a4f8903db1c95c8dd6dae240的正规化的商
应用:实射影空间之基本群同构于Quantum Field Theory II - 页 3 3cee80f77e305457c58940f4cc1cb2e1
图、曲面与多面体的基本群[编辑][/ltr]


  • 的基本群总是自由群。这点可借着将图沿其最小生成树缩为一束Quantum Field Theory II - 页 3 E8ec927f8588d7d7e51f546868e790b3看出。
  • 多面体的基本群可以展示为生成元与关系,使得每个关系由多面体的一个面给出。
  • 可定向紧曲面的基本群带一个有Quantum Field Theory II - 页 3 1b33b27a9ff57ef2e67c799b57359f42个生成元Quantum Field Theory II - 页 3 D58c4c3743ffc88f51c679920ff76fb3及一个关系Quantum Field Theory II - 页 3 34a3f42fa8aad9039ebb60f98cb31cb0的展示。整数Quantum Field Theory II - 页 3 B2f5ff47436671b6e533d8dc3614845d决定于曲面的拓扑结构,称为其亏格


[ltr]
基本群与覆叠空间[编辑]
基本群的子群的共轭类一一对应于空间的覆叠的同构类,在此对应下,正规子群对应于伽罗瓦覆叠。
覆叠空间理论中,业已证明了如果空间有单连通的覆叠空间(例如对局部单连通空间),则基本群同构于万有覆叠空间的自同构群。
推广[编辑]
基本广群[编辑]
如果一个小范畴(即:对象与全体态射构成一集合)的所有态射皆可逆,则称之为一个广群。所有广群与其间的函子构成一个范畴。群是只有一个对象的广群。
Quantum Field Theory II - 页 3 Dfcf28d0734569a6a693bc8194de62bf为一广群,对其对象定义下述等价关系:
Quantum Field Theory II - 页 3 29c03e80ffccefa221aecc07c9fbd08a
得到的商集记作Quantum Field Theory II - 页 3 F00afc1a8d39d586f9eaa1bf0bfbfe54(或曰连通分支),这是从广群范畴到集合范畴的函子。
对每个拓扑空间,以下述方式函子地构造一广群Quantum Field Theory II - 页 3 7079b0149ee67170cd038c696556157a
Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383为拓扑空间,令Quantum Field Theory II - 页 3 7079b0149ee67170cd038c696556157a的对象为Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383的点,从点Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6Quantum Field Theory II - 页 3 415290769594460e2e485922904f345d的态射是从Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6Quantum Field Theory II - 页 3 415290769594460e2e485922904f345d道路的同伦类。同伦等价关系相容于道路的头尾相接,故定义了一个广群Quantum Field Theory II - 页 3 7079b0149ee67170cd038c696556157a,称为Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383基本广群
Van Kampen定理在广群的框架下有简练的表述。
Quantum Field Theory II - 页 3 Dfcf28d0734569a6a693bc8194de62bf为广群,而Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6为其对象(也称作Quantum Field Theory II - 页 3 Dfcf28d0734569a6a693bc8194de62bf的点)。Quantum Field Theory II - 页 3 4485ddf6f68b5c9504754fd18f82d954在态射合成下成为一个群,记之为Quantum Field Theory II - 页 3 Cab3d87174dc171e6f4cd7b141fb219f。注:由于基点选取问题,Quantum Field Theory II - 页 3 23bbd698ad7518cd800cc57921436e96并不能定义一个从广群范畴到群范畴的函子。
一个拓扑空间的基本群可以用基本广群定义为Quantum Field Theory II - 页 3 D83553705cd77255663d38d521cfade6
高阶同伦群[编辑]
基本群实则是第一个同伦群,这是符号Quantum Field Theory II - 页 3 2a9ac9c986e186868fd0893bd0236d31中“1”的由来。
代数几何中的基本群[编辑]
基本群亦可抽象地定义为纤维函子的自同构群,此纤维函子对每个带基点的覆叠映射Quantum Field Theory II - 页 3 939a6ad386dda3ccbf7935387caebf48给出纤维Quantum Field Theory II - 页 3 54f060459de381015980dd64b5b3e33d
此定义可以推广到代数几何,而之前给出的环路定义则不可。在此我们将拓扑空间的覆叠映射代为平展态射,拓扑空间的基点代为概形上的一个几何点Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6,而纤维函子Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012对一平展覆叠Quantum Field Theory II - 页 3 7bf3b67e86ca3abaf9c2f5a2888df8cd给出几何纤维Quantum Field Theory II - 页 3 05728b84345af648401e79a8e6deee37。此推广源出格罗滕迪克夏瓦雷
这套理论可以解释函数域伽罗瓦理论黎曼曲面的覆叠理论之联系。
文献[编辑][/ltr]


  • Allen Hatcher, Algebraic Topology (2001), Cambridge University Press.ISBN 0521795400
  • J. P. May, A Concise Course in Algebraic Topology (1999), Chicago University Press. ISBN 0226511839


[ltr]
外部链接[编辑][/ltr]






同伦群[编辑]



[ltr]在数学中,同伦群拓扑空间的一种同伦不变量。同伦群的研究是同伦理论的基石之一,一般空间的同伦群极难计算,即使对球面 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8 的情形,至今也没有完整结果。

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

定义[编辑]
设 Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383 为拓扑空间而 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8 为 Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 维球面。选定基点 Quantum Field Theory II - 页 3 4413eac9dca80bcb367d05f415ba9aa0。定义 Quantum Field Theory II - 页 3 5d6f06034dccd2e0549d201f8188139d 为 Quantum Field Theory II - 页 3 A5477af9e461cd9b41d615f82a3f52fa,也就是由保持基点的连续映射 Quantum Field Theory II - 页 3 82c637e36bf1e435d0d43c5d69af903d同伦类构成的集合。为了方便起见,以纬垂坐标表示球面上的点,即:Quantum Field Theory II - 页 3 4e1f40b5096711a9414f09e7a33c7891 表示 Quantum Field Theory II - 页 3 Fdc1e52624f2bf26ebd24510b06df483 在商映射 Quantum Field Theory II - 页 3 95b72a9509f76ab035cd66a8afadab0a 下的像。取 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8 的基点为 Quantum Field Theory II - 页 3 7c25a08752f7f08aeee8a35916539079

注意到当 Quantum Field Theory II - 页 3 0e1176caf07d2ed21c19fc899be7e7df 时,Quantum Field Theory II - 页 3 20cf2302680ee0cd965dcf7cd8206026 而 Quantum Field Theory II - 页 3 238ba57e0772c9b7a832aaa7fb3f379a 的元素一一对应到 Quantum Field Theory II - 页 3 02129bb861061d1a052c592e2dc6b383 的连通分支。
[/ltr][/size]
Quantum Field Theory II - 页 3 220px-Homotopy_group_addition.svg
Quantum Field Theory II - 页 3 Magnify-clip
基本群的群运算
[size][ltr]
对于 Quantum Field Theory II - 页 3 Fe37f48a6bb040c06c5e7ccaac63bc66Quantum Field Theory II - 页 3 5d6f06034dccd2e0549d201f8188139d 带有自然的群结构:首先,我们构造一个连续映射:
Quantum Field Theory II - 页 3 F1be834f14bef78eab09743abb372883
在此 Quantum Field Theory II - 页 3 49466e6119c40b3d0c39dc7b7f2ae2ec 定义为将两份 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8沿基点黏合得到的拓扑空间。映射 Quantum Field Theory II - 页 3 03c7c0ace395d80182db07ae2c30f034定义为
Quantum Field Theory II - 页 3 694d369a1db9bec72ef20cc0335899b7
直观来看,Quantum Field Theory II - 页 3 03c7c0ace395d80182db07ae2c30f034 的效应相当于将球面 Quantum Field Theory II - 页 3 3b08d35114a95966e1300b5a2be756d8 沿赤道掐扁。
给定 Quantum Field Theory II - 页 3 F543354834588efae1354b3386cd45f5,我们定义 Quantum Field Theory II - 页 3 90ce8008d31eafcc514180c15539f41b,由于 Quantum Field Theory II - 页 3 63371d923b53f367b0224c3c2ef9be80,此函数有完善的定义。此外也不难验证 Quantum Field Theory II - 页 3 15c230cf6fc4c47c6d574e7f43641e73 仅依赖于 Quantum Field Theory II - 页 3 9049a848dae63b78d444bb938a7de466 的同伦类。
可以证明运算 Quantum Field Theory II - 页 3 Be88da8a29c581c2321a2a7677f762df 满足公理,其单位元素为常值映射 Quantum Field Theory II - 页 3 A5b57b6bd9270cfa59cdf16c2b2bf284Quantum Field Theory II - 页 3 A8da8bb97996c56f64c9aab71f11e174 不外就是基本群;而当 Quantum Field Theory II - 页 3 5d5f448f1528508f27683f57c3c34111 时,Quantum Field Theory II - 页 3 5d6f06034dccd2e0549d201f8188139d 是阿贝尔群,称为高阶同伦群。不同基点对应的同伦群只差一个自然同构。
若在定义中省掉基点,则得到的集合 Quantum Field Theory II - 页 3 A5477af9e461cd9b41d615f82a3f52fa 等同于 Quantum Field Theory II - 页 3 5d6f06034dccd2e0549d201f8188139d 在 Quantum Field Theory II - 页 3 A8da8bb97996c56f64c9aab71f11e174 作用下的轨道集。可见若 Quantum Field Theory II - 页 3 5e83c3c57990acc025ecb151ae7a7b42Quantum Field Theory II - 页 3 A5477af9e461cd9b41d615f82a3f52fa 未必有自然的群结构。
纤维化导出长正合序列[编辑]
设 Quantum Field Theory II - 页 3 241edfc50c74925df7f9b58c7b2deee0 为保基点的塞尔纤维化,纤维的同伦类定义为 Quantum Field Theory II - 页 3 800618943025315f869e4e1f09471012。此时可导出同伦群的长正合序列(以下略去基点):
Quantum Field Theory II - 页 3 4692d350d4e36343471185d04e4bf5f0
尽管这里的 Quantum Field Theory II - 页 3 C919d8d80b32543f20558f10c6ad840a 只是个集合,而 Quantum Field Theory II - 页 3 23bbd698ad7518cd800cc57921436e96 未必是阿贝尔群,它们仍带有特殊的元素(Quantum Field Theory II - 页 3 53ae96c1ebc2116f7e4223bb929ec363 的单位元、Quantum Field Theory II - 页 3 C919d8d80b32543f20558f10c6ad840a 中包含基点的连通分支),可以用这些元素定义正合序列。
纤维化映射是计算高阶同伦群的基本手段。
相对同伦群[编辑]
给定 Quantum Field Theory II - 页 3 6a2a54f74e96aa7fe99d5384c3341280,可以定义相对同伦群 Quantum Field Theory II - 页 3 Dc0e5a4c0371631246de56ddcdc81aba 为映射 Quantum Field Theory II - 页 3 31f51f2a09d5463651e196d2338d3c43 的同伦类,这意味着我们仅考虑满足 Quantum Field Theory II - 页 3 7f4d2e3018b637b48d3790e7102e145b 的连续映射,以及其间满足相同限制的同伦。若取 Quantum Field Theory II - 页 3 7fc56270e7a70fa81a5935b72eacbe29 为一点,便回到同伦群的原始定义。相对同伦群也有纤维化长正合序列。
文献[编辑]

[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-23, 03:42

Category:Fredholm theory

From Wikipedia, the free encyclopedia


[ltr]The main article for this category is Fredholm theory.
Pages in category "Fredholm theory"
The following 10 pages are in this category, out of 10 total. This list may not reflect recent changes (learn more).
[/ltr]
A

F

F cont.

L

R


Categories



Fredholm operator

From Wikipedia, the free encyclopedia


[ltr]In mathematics, a Fredholm operator is an operator that arises in theFredholm theory of integral equations. It is named in honour of Erik Ivar Fredholm.
A Fredholm operator is a bounded linear operator between two Banach spaces, with finite-dimensional kernel and cokernel, and with closed range. (The last condition is actually redundant.[1]) Equivalently, an operatorT : X → Y is Fredholm if it is invertible modulo compact operators, i.e., if there exists a bounded linear operator
Quantum Field Theory II - 页 3 2d7d7c260ab36270042c6a7b2b94665f
such that
Quantum Field Theory II - 页 3 Ce5e4e98015743ace27af1200a7a2305
are compact operators on X and Y respectively.
The index of a Fredholm operator is
Quantum Field Theory II - 页 3 2c1801bfea611cdaf7ba5e16fd7c1ec8
or in other words,
Quantum Field Theory II - 页 3 90d2bfe6f83404ffcb871b630d99995e
see dimensionkernelcodimension, range, and cokernel.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Properties[edit]
The set of Fredholm operators from X to Y is open in the Banach space L(XY) of bounded linear operators, equipped with the operator norm. More precisely, when T0 is Fredholm from X to Y, there exists ε > 0 such that every T in L(XY) with ||T − T0|| < ε is Fredholm, with the same indexas that of T0.
When T is Fredholm from X to Y and U Fredholm from Y to Z, then the composition Quantum Field Theory II - 页 3 69817ab67a542e3e2bc3a878b152d812 is Fredholm from X to Z and
Quantum Field Theory II - 页 3 09961c09f14e17a596f637e87a682241
When T is Fredholm, the transpose (or adjoint) operator T ′ is Fredholm from Y ′ to X ′, and ind(T ′) = −ind(T). When X and Y are Hilbert spaces, the same conclusion holds for the Hermitian adjoint T.
When T is Fredholm and K a compact operator, then T + K is Fredholm. The index of T remains constant under compact perturbations of T. This follows from the fact that the index i(s) of T + sK is an integer defined for every s in [0, 1], and i(s) is locally constant, hence i(1) = i(0).
Invariance by perturbation is true for larger classes than the class of compact operators. For example, when T is Fredholm and S a strictly singular operator, then T + S is Fredholm with the same index.[2] A bounded linear operator S from X to Y is strictly singular when its restriction to any infinite dimensional subspace X0 of X fails to be an into isomorphism, that is:
Quantum Field Theory II - 页 3 C1cae282ea32ad1fa9a8a6245b4258ea
Examples[edit]
Let H be a Hilbert space with an orthonormal basis {en} indexed by the non negative integers. The (right) shift operator S on H is defined by
Quantum Field Theory II - 页 3 F3a4b334e2ada8b87b3f432723123e76
This operator S is injective (actually, isometric) and has a closed range of codimension 1, hence S is Fredholm with ind(S) = −1. The powers Sk,k ≥ 0, are Fredholm with index −k. The adjoint S is the left shift,
Quantum Field Theory II - 页 3 04cc8613b57dc87e64dde7dbb8923ace
The left shift S is Fredholm with index 1.
If H is the classical Hardy space H2(T) on the unit circle T in the complex plane, then the shift operator with respect to the orthonormal basis of complex exponentials
Quantum Field Theory II - 页 3 7606ad5b2328ab0730a0ab0bd79305e5
is the multiplication operator Mφ with the function φ = e1. More generally, let φ be a complex continuous function on T that does not vanish on T, and let Tφ denote the Toeplitz operator with symbol φ, equal to multiplication byφ followed by the orthogonal projection P from L2(T) onto H2(T):
Quantum Field Theory II - 页 3 01b21e98b14b8ec3e91f96f7724b7d21
Then Tφ is a Fredholm operator on H2(T), with index related to the winding number around 0 of the closed path t ∈ [0, 2 π] → φ(e i t) : the index of Tφ, as defined in this article, is the opposite of this winding number.
Applications[edit]
The Atiyah-Singer index theorem gives a topological characterization of the index of certain operators on manifolds.
An elliptic operator can be extended to a Fredholm operator. The use of Fredholm operators in partial differential equations is an abstract form of the parametrix method.
B-Fredholm operators[edit]
For each integer Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1, define Quantum Field Theory II - 页 3 E2d6597f109d357091bdcc1b36d4ba9a to be the restriction of Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3 to Quantum Field Theory II - 页 3 Bc4362f406896a044621eb1d2f4b4ce6 viewed as a map from Quantum Field Theory II - 页 3 Bc4362f406896a044621eb1d2f4b4ce6 into Quantum Field Theory II - 页 3 Bc4362f406896a044621eb1d2f4b4ce6 ( in particular Quantum Field Theory II - 页 3 4c9b6578fb4773049c9b0beea9fb9a87). If for some integer Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 the space Quantum Field Theory II - 页 3 Bc4362f406896a044621eb1d2f4b4ce6 is closed and Quantum Field Theory II - 页 3 E2d6597f109d357091bdcc1b36d4ba9a is a Fredholm operator,then Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3 is called a B-Fredholm operator. The index of a B-Fredholm operator Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3 is defined as the index of the Fredholm operator Quantum Field Theory II - 页 3 0b9f2991087ddb13a722a3319a0bbe2e. It is shown that the index is independent of the integer Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1. B-Fredholm operators were introduced by M. Berkani in 1999 as a generalization of Fredholm operators.[3]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Yuri A. Abramovich and Charalambos D. Aliprantis, "An Invitation to Operator Theory", p.156

  2. Jump up^ T. Kato, "Perturbation theory for the nullity deficiency and other quantities of linear operators", J. d'Analyse Math6 (1958), 273–322.

  3. Jump up^ Berkani Mohammed: On a class of quasi-Fredholm operators INTEGRAL EQUATIONS AND OPERATOR THEORY Volume 34, Number 2 (1999), 244-249 [1]


[size][ltr]
References[edit]
[/ltr][/size]

[size]
Categories
[/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-24, 04:30

5. Geometrical Optics
In order to understand classical mechanics and quantum mechanics, one
has to understand geometrical optics.
The Huygens principle is the first general principle in the history of physics,
which describes the propagation of physical effects.
Folklore
The philosophers of antiquity speculated about the nature of light, being
familiar with burning glasses, with the rectilinear propagation of light, and
with refraction and reflection. The first systematic writings on optics of
which we shave any definite knowledge are due to Greek philosophers and
mathematicians (Empedocles (490–430 B.C.) and Euclid (360–290 B.C.).
Max Born and Emil Wolf, 1959
In 1636, the year in which Harvard College was founded, R´ene Descartes
(1596–1650) was putting his last hand to his Discourse sur la m´ethode de
bien conduire sa raison which contained among others his geometry and
also his dioptrics. In 1637, this book came into the hands of Pierre de
Fermat (1601–1665). In 1657 Fermat received from the physician of King
Louis XIV and of Mazarin, Cureau de la Chambre, in his time a very
reputed man who was also a physicist of note, a treatise about optics. In
the letter in which he acknowledged the receipt of this book, he stated
for the first time his idea that the law of refraction might be deduced
from the minimum principle of shortest time, just like the Greek engineer
Heron of Alexandria (100 A.D.) had done for the reflection of light. . . In
a letter dated January 1, 1662, he announces to Cureau de la Chambre
that he found to his amazement that his principle was yielding a new
demonstration of Descartes’ refraction law . . .
Huygens (1629–1695) was working at the Paris Academy from 1666 until
1681. What Huygens did for optics is exactly the same thing which was
done two hundred years later by Maxwell (1831–1879) for electricity. Huygens
replaced Fermat’s long distance principle of least time by a ‘contact
principle’. The light waves of Huygens were exactly as hypothetical as the
atoms of Democritos (400 B.C.) . . .
The theory of Huygens was shortly afterwards killed by Newton (1643–
1727) who showed that it was inconsistent with the propagation of longitudinal
waves and the possibility of the existence of transversal waves
had not been devised at yet. In consequence the influence of Huygens was
delayed for one hundred and twenty-five years if we consider the progress
in optics and was lost altogether for the progress of the Calculus of Variations
. . .
The very first solution for the brachistochrone problem which Johann
Bernoulli (1667–1748) found in 1696 contains the demonstration of the crucial
fact that the minimum is really attained for the cycloid . . . Bernoulli’s
method, in which something of the field theory of Weierstrass (1815–1897)
appears for the first time did not attract the attention even of Bernoulli’s
contemporaries and remained completely ignored for nearly two hundred
years. These two pages which I discovered by chance more than thirty
years ago, have had a very decisive influence on the work I myself did in
the Calculus of Variations. I succeeded gradually in simplifying the exposition
of this theory and came finally to the point where I found to
my astonishment that the method to which I have directed through long
and hard work was contained, at least in principle, in the admirable book
Trait´e de la lumini´ere (Treatise on light) of Huygens from the year 1690

5.1 Ariadne’s Thread in Geometrical Optics
The following three equations describe light rays y = y(x), x ∈ R and wave fronts
S(x, y) = const of light in the plane.
Relation to point mechanics. Let us use the following substitution:
x ⇒ t, y ⇒ q.
Then the light ray y = y(x) passes over to the motion q = q(t) of a mass point on
the real line. Moreover, the slope y

(x) passes over to the velocity (time derivative)
q˙(t). This way, it is possible to pass from geometrical optics to classical mechanics,
by using the appropriate Lagrangian L. In particular, the eikonal S having the
physical dimension of time passes over to the action S having the physical dimension
of energy times time.
Regular and singular behavior of light rays. In the regular situation, two
different points are connected by a uniquely determined light ray. If the situation
is not regular (i.e., singular), light rays may intersect. We distinguish between
• isolated intersection points (focal points) and
• envelopes of light rays (caustics).
In real life, the light intensity of focal points and caustics is much larger than that of
regular configurations. In the second half of the 20th century, Arnold and his school
in Moscow thoroughly studied the classification of singular behavior in geometrical
optics. This is closely related to the sophisticated theory of singularities in algebraic
geometry (Fig. 5.2).
Gravitational lenses. Suppose that the light coming from a distant quasar Q
in the universe passes through a galaxy. According to Einstein’s theory of general
relativity, the gravitational forces related to the galaxy cause refraction of light. This
means that the galaxy acts like a lens called gravitational lens. Astronomers observe
the same caustic effects as for lenses in laboratories on earth. For example, there
exists one quasar which has four different images in the Hubble Space Telescope.
This is the so-called Einstein cross.
Perspectives. Geometrical optics is closely related to the following mathematical
subjects:
• duality between systems of first-order ordinary differential equations (e.g., light
rays) and first-order partial differential equations (e.g., wave fronts) in analysis,
• symplectic geometry,
• contact geometry,
• light rays and non-Euclidean geometry (geodesics, Riemannian geometry and
curvature, K¨ahler geometry).
It was discovered by Hamilton (1805–1865) that geometrical optics and point mechanics
can be described by the same mathematics.
Light in Maxwell’s theory of electrodynamics. In 1873 Maxwell (1831–
1879) published his Treatise on Electricity and Magnetism. For a fairly large class
of materials (without external charges and external currents), in an inertial system,
the Maxwell equations look like
curlE = −Bt, curlH = Dt, divD = 0, divB = 0 (5.6)
together with the constitutive laws D = εE and B = μH.
Here, we use a Cartesian (x, y, z)-coordinate system, and E,D,B,H, ε, μ depend
on the point (x, y, z). Moreover, ε (resp. μ) are material functions called the
dielectricity (resp. magnetic permeability) function.4 The velocity of light in the
material at the point (x, y, z) is given by
cmatter(x, y, z) =c/n(x, y, z)
where c is the velocity of light in a vacuum, and n(x, y, z) is the refraction index
at the point (x, y, z). The refraction index is caused by the interaction between
electromagnetic waves and the atoms of the material.
In Maxwell’s theory, light corresponds to electromagnetic waves.
Light rays are the streamlines of the energy flow caused by the electric field E and
the magnetic field B. More precisely, the velocity vector field of the energy flow is
given by
v(x, y, z, t) :=E(x, y, z, t) ×H(x, y, z, t)/η(x, y, z, t),
where η = 1/2 (ED+BH) is the electromagnetic energy density. Thus, the light rays
x = x(t) are the solutions of the differential equation
x˙ (t) = v(x(t), t), t ∈ R.
Now to the point. Geometrical optics represents the short-wavelength limit
λ → 0
of the Maxwell theory, where λ denotes the wavelength.

5.2 Fermat’s Principle of Least Time
Fermat’s principle reads as follows:
Light rays move in such a way that the travelling time is minimal.

5.3 Huygens’ Principle on Wave Fronts
Huygens’ principle reads as follows:
Wave fronts are the envelopes of elementary waves.
Intuitively, this means the following. Consider a wave front Wt at fixed time t. Each
point of Wt originates a family of elementary wave fronts. For any later time t+Δt,
the envelope of the elementary waves at time t + Δt forms the wave front at time
t + Δt.
Short-range forces in nature. We distinguish between
• short-range forces and
• long-range forces.
The Huygens principle corresponds to a short-range force.

5.4 Carath´eodory’s Royal Road to Geometrical Optics
Once a day the Ptolemean king asked Euclid (ca. 360–290 B.C.) for showing
him an easy approach to mathematics. Euclid answered that there
is no ‘royal road’ to mathematics. The same anecdote is also told about
Alexander the Great (356–323 B.C.) and Aristotle (384–322 B.C.).
Folklore
Constantin Carath´eodory (1873–1950), a student of Hilbert (1862–1943)
and the leading expert in the calculus of variations, instinctively felt that
there must be a simple ‘royal road’ to the calculus of variations. He was
obsessed by the question “Why extremals play such a distinguished role?”
They are being used and they function fabulously, but how can one reason
out and show their necessity and simplicity? Carath´eodory’s wonderful
paper Die Methode der geod¨atischen ¨ Aquidistanten, Acta Mathematica 47
(1925), 199–230, was the result of his investigations.
Krystzof Maurin, 1997

5.7 Lie’s Contact Geometry
Contact geometry of dimension 2n + 1 (n = 1, 2, . . .) is based on contact
elements which are pairs (P,Π) of a point P and a 2n-dimensional plane
Π through the point P. Contact geometry is closely related to envelopes of
curves and su***ces (e.g., this concerns Huygens’ principle in geometrical
optics).
Contact transformations provide the general setting for transforming ordinary
and partial differential equations in such a way that solutions of the
original equation pass over to solutions of the transformed equation.
Folklore
Contact geometry does for geometric optics and the theory of wave propagation
what symplectic geometry does for mechanics. Both these geometries
and their isomorphisms were conceived by a single man – Sophus Lie
(1842–1899). The thesis that Lie is the father of both geometries is firmly
founded. . .
Lie regarded the theory of groups of contact transformations (founded in
1871) as his greatest discovery and achievement.
Krystzof Maurin, 1997

Perspective. One can rigorously show that Fermat’s principle of least time is
equivalent to Huygens’ principle for the propagation of wave fronts. To this end,
one has to use one-parameter families of contact transformations in an appropriate
higher-dimensional space. This can be found in Giaquinta and Hildebrandt (1995),
Vol. 2, Sect. 3.4. In a general setting, we will study this in Vol. III by considering
the Cartan–K¨ahler theorem for systems of differential forms and its applications to
the following topics:
• differential geometry (e.g., the main theorem on the construction of su***ces by
means of the Gaussian invariants and its generalization to higher dimensions),
• the theory of Lie groups (the reconstruction of a Lie group from its Lie algebra),
• geometrical optics, and
• thermodynamics.

5.7.4 Equilibrium Thermodynamics and Legendre Submanifolds
Thermodynamical systems in equilibrium states (e.g., chemical substances)
can be described by the Gibbs contact form and its integral manifolds.
Folklore
Every mathematician knows that it is impossible to understand any elementary
course in thermodynamics. The reason is that thermodynamics
is based – as Gibbs (1839–1903) has explicitly proclaimed – on the rather
complicated mathematical theory of contact geometry.
Vladimir Arnold, 1990
Consider a chemical substance in thermodynamical equilibrium. The physics of this
substance is governed by the Gibbs contact form
Γ := dE − TdS + PdV − μdN. (5.35)
Here, the symbols have the following physical meaning:
• T (absolute temperature),
• V (volume), P (pressure), N (particle number),
• E (inner energy), S (entropy), μ (chemical potential).
Physicists also introduce the following quantities:
• F := E − TS (free energy),
• Ω := E − TS − μN (statistical potential or Gibbs potential),
• H := E + PV (enthalpy),
• G = F + PV (free enthalpy).
In physics, one has frequently to change the independent thermodynamical variables.
The following approach based on the Gibbs contact form is very flexible
with respect to changing variables.

5.8 Light Rays and Non-Euclidean Geometry
Geometry is the essential of the beauty of the world.
Johannes Kepler, Harmonies of the World, 1619
In humbleness we have to admit that if “number” is a product of our
imagination, “space” has a reality outside of our imagination, to which we
a priori cannot assign its laws.
Carl Friedrich Gauss in a letter to Bessel
An axiomatic approach to Euclidean geometry was formulated by the Greek mathematician
Euclid (about 360 B.C.–290 B.C.) in his famous Elements. More than
2000 years later, three mathematicians proved independently that there exist logically
consistent non-Euclidean geometries for which Euclid’s parallel axiom does
not hold, namely, Gauss (1777–1855) in 1792ff, Lobachevsky (1792–1856) in 1826ff,
and B´olayi, Jr. (1802–1860) in 1832.19 Morris Kline writes in his history of mathematics:
Gauss said in a letter to Bessel of January 27, 1829, that he probably would
never publish his findings in non-Euclidean geometry, because he feared
ridicule, or, as he put it, the clamor of Boeotians, a figurative reference to
a dull-witted Greek tribe.
The reader should notice that in Gauss’ time the intellectual world at large was
dominated by the preeminent German philosopher Immanuel Kant (1742–1804)
who claimed in his 1781 major work Critique of Pure Reason that Euclidean geometry
is fixed a priori in all the human brains. Gauss did not share Kant’s opinion.
The development of Einstein’s theory of general relativity proved that Gauss was
right.
Models of non-Euclidean geometry (based on subsets of the Euclidean plane
equipped with a non-Euclidean metric) were given by Beltrami (1835–1900) in
1868, Klein (1842–1925) in 1871, and Poincar´e (1854–1912) in 1902. The Poincar´e
model was very influential because of his close relation to elementary geometric
and physical intuition.21 We will study this model and its relations to modern
mathematics and physics in Sect. 5.10. The modern axiomatic approach to geometry
was published by Hilbert in his 1899 monograph.
The fascinating history of geometry is described by C. Scriba and P. Schreiber,
5000 Years of Geometry, Springer, Heidelberg, 2003 (in German). We also refer to
the monographs by F. Klein, Development of Mathematics in the 19th Century,
Math. Sci. Press, New York, 1979, and by E. Scholz, The History of the Idea of
Manifold, Birkh¨auser, Basel, 1980 (in German).

5.8.1 Linear Symplectic Spaces
Symplectic forms. Let Y be a real linear space. By a symplectic form κ on Y , we
understand a bilinear map κ : Y × Y → R which has the following two properties:
• κ(v,w) = −κ(w, v) for all v,w ∈ Y (antisymmetry).
• If κ(v0, w) = 0 for all w ∈ Y and fixed v0 ∈ Y , then v0 = 0 (non-degeneracy).
The real linear space Y equipped with a symplectic form κ is called a symplectic
space.
Symplectic morphism. Let Y,Z be real, symplectic spaces with the symplectic
forms κ, σ, respectively. By definition, a symplectic morphism is a linear map
A : Y → Z with
σ(Av,Aw) = κ(v,w) for all v,w ∈ Y.
If, in addition, this map A is bijective, then it is called a symplectic isomorphism.
Almost complex space. The space Y is called almost complex iff it is a real
linear space and there exists a linear operator J : Y → Y with J J = −I. Here, I
denotes the unit operator.

5.8.2 The K¨ahler Form of a Complex Hilbert Space
The splitting of the inner product of a complex Hilbert space into real
part and complex part corresponds to a splitting of the unitary geometry
in Hilbert spaces into symplectic geometry and K¨ahler geometry. These
geometries are fundamental for both classical and modern physics.
Folklore
This section serves as a preparation for the theory of K¨ahler mannifolds to be
considered in the next section in the framework of non-Euclidean geometry.


Skew-Hermitian

From Wikipedia, the free encyclopedia












[ltr]An Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 by Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 complex or real matrix Quantum Field Theory II - 页 3 F078951c0d8315d7e42bdb687a29fc17 is said to be anti-Hermitianskew-Hermitian, or said to represent a skew-adjoint operator, or to be a skew-adjointmatrix, on the complex or real Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 dimensional space Quantum Field Theory II - 页 3 81ee230b1b6ccc68c22232a819c0a1a0, if its adjoint is the negative of itself: :Quantum Field Theory II - 页 3 Fd2d17b76873f8c8740082240e17e8aa.
Note that the adjoint of an operator depends on the scalar product considered on the Quantum Field Theory II - 页 3 7b8b965ad4bca0e41ab51de7b31363a1 dimensional complex or real space Quantum Field Theory II - 页 3 81ee230b1b6ccc68c22232a819c0a1a0. If Quantum Field Theory II - 页 3 11cc2669f586fccbd89d3f5c2c19df27 denotes the scalar product on Quantum Field Theory II - 页 3 81ee230b1b6ccc68c22232a819c0a1a0, then saying Quantum Field Theory II - 页 3 7fc56270e7a70fa81a5935b72eacbe29 is skew-adjoint means that for all Quantum Field Theory II - 页 3 2537d52c4ac876e10c9acff68aac790b one has Quantum Field Theory II - 页 3 F6dd3668bb62a41609992565e371c677
In the particular case of the canonical scalar products on Quantum Field Theory II - 页 3 81ee230b1b6ccc68c22232a819c0a1a0, the matrix of a skew-adjoint operator satisfies Quantum Field Theory II - 页 3 D37cc6bda5dc7cb78af17a09797a67f6 for all Quantum Field Theory II - 页 3 Bba16ae4ae3f2348e89aff374155f327.
Imaginary numbers can be thought of as skew-adjoint (since they are like 1-by-1 matrices), whereas real numbers correspond to self-adjoint operators.

See also[size=13][edit]

[/ltr][/size]














5.8.3 The Refraction Index and Geodesics
The Poincar´e model in non–Euclidean geometry is obtained by replacing straight
lines in Euclidean geometry by light rays in the upper half-plane equipped with an
appropriate refraction index.
• The light rays are called hyperbolic straight lines.
• The angles between the light rays are called hyperbolic angles.
In contrast to Euclidean geometry, the sum of angles of a hyperbolic *** is not
equal to π, but less than π. The Poincar´e model represents an extremely elegant
formulation of Lobachevsky’s sophisticated work on non-Euclidean geometry. Formulated
in the right mathematical language due to ´Elie Cartan (i.e., based on both
the connection form and the curvature form), the Poincar´e model is the prototype
of both the Einstein theory of general relativity on gravitation and the Standard
Model in elementary particle physics. In the following sections, we want to study
the Poincar´e model and its relations to numerous important subjects in modern
mathematics and physics. In greater detail, we will investigate this in Vol. III on
gauge theory

5.8.4 The Trick of Gauge Fixing
Many variational problems in mathematics and physics possess additional
degrees of freedom called gauge degrees of freedom (e.g., the choice of
parametrization or the choice of potentials). This concerns problems in
geometry (e.g., geodesics and minimal su***ces), in quantum electrodynamics
in terms of the 4-potential, in the Standard Model of elementary
particle physics, and in string theory based on the conformal invariance of
the action functional. The strategy for handling such problems is to fix
a special gauge. However, the introduction of additional constraints has to
be done with care. Moreover, one has to ensure that physical statements do
not depend on the choice of the gauge fixing. In quantum field theory this
is closely related to the Ward identities, the more general Slavnov–Taylor
identities, and the cohomological BRST-symmetry theory due to Becchi,
Rouet, Stora and Tyutin.
Folklore

5.8.6 Hamilton’s Duality Trick and Cogeodesic Flow
Mathematicians and physicists enjoy Hamiltonian systems, since such dynamical
systems allow the application of methods from symplectic geometry.
In particular, the Hamiltonian function of a Hamiltonian system is
always a conserved quantity.
Folklore

5.9 Spherical Geometry
Spherical geometry is the geometry on the su***ce of earth.
Folklore




[ltr]球面几何学是在二维球面表面上的几何学,也是非欧几何的一个例子。
平面几何 中,基本的观念是线。在球面上,的观念和定义依旧不变,但线不再是“直线”,而是两点之间最短的距离,称为测地线。在球面上,最短线是大圆的弧,所以平面几何中的线在球面几何中被大圆所取代。同样的,在球面几何中的被定义在两个大圆之间。结果是球面三角学和平常的三角学有诸多不同之处。例如:球面三角形的内角和大于180°。
对比于通过一个点至少有两条平行线,甚至无穷多条平行线的双曲面几何学,通过特定的点没有平行线的球面几何学是椭圆几何学中最简单的模式。
球面几何学在航海学天文学都有实际且重要的用途。
球面几何学的重要关键在塑造真实投影平面,通过辨认在球面上获得正相反的对蹠点(分列在边的两侧相对的点)。在当地,投影平面具有球面几何所有的特性,但有不同的总体特性,特别是他是无定向的。

参见[size=13][编辑]

[/ltr][/size]




[ltr]

外部链接[编辑]

[/ltr]





5.9.2 De Rham Cohomology and the Chern Class of the Sphere
Cohomology is deeply routed in the following topics: Gauss’ su***ce theory,
the Kirchhoff–Weyl theory of electrical networks, and Maxwell’s theory of
electromagnetism. Cohomology lies at the heart of both modern differential
topology and modern quantum field theory (the BRST approach).
Folklore

The main result of Hodge theory is the following one:
For a compact Riemannian manifold M, every de Rham cohomology class
contains precisely one harmonic form.
Consequently, the de Rham cohomology class Hq(M) is isomorphic to the real
linear space of all harmonic q-forms.

Note the following:
• The de Rham cohomology works for all compact manifolds. We do not need any
additional mathematical structure.
• In contrast to this, Hodge theory can only be applied to compact Riemannian
manifolds. We need the additional metric structure in order to introduce the
Hodge star operator, and hence the Laplacian.

The relation β0 = β2 is called the Poincar´e duality of the sphere. For the Euler
characteristic of the sphere, we get
χ(S2r
) = β0 − β1 + β2 = 1− 1 + 1 = 2.
In terms of topology, the following holds:
• β0 = 1 tells us that the sphere S2r
is path-connected, that is, two points on the
sphere can always be connected by a continuous path.
• β1 = 0 tells us that the sphere is simply connected. That is, every closed continuous
curve on the sphere can be continuously contracted into a point.
• β2 = 1 tells us that the sphere is orientable.
Note the following:
• Cohomology: The definition of the Euler characteristic above in terms of differential
forms, displays the analytic character of this quantity. This corresponds to
cohomology in topology.
• Homology: The Euler characteristic can also be characterized by the Euler polyhedron
formula (5.66) in terms of triangulations of the basic manifolds. The Euler
polyhedron formula is the starting point for homology in topology.
Surprisingly enough, the two completely different approaches yield the same quantity.
This is the deep duality between homology and cohomology. In terms of physics,
this means that there exists a deep relation between the geometric structure of the
space-time manifold (homology) and the physical fields that live on the space-time
manifold (cohomology).

5.9.3 The Beltrami Model
Beltrami’s model of elliptic geometry.
Beltrami’s hyperbolic model.
The pseudosphere of Gauss.
The Gaussian curvature.
The theorema egregium of Gauss – a gem of mathematics and physics.
The Gaussian curvature is defined by using the surrounding space. Gauss posed the
following fundamental question:
Is it possible to compute the Gaussian curvature without using the surrounding
space, but only by using the functions E,F,G of the intrinsic
metric?
After tedious computations, Gauss found the answer. The theorema egregium tells
us that the Gaussian curvature K only depends on the metric functions E,F,G and
their partial derivatives up to second order.
Gauss proved that
Curvature is an intrinsic property of a 2-dimensional manifold which is
equipped with the notion of arc length.
In particular, for the pseudosphere with pseudoradius r = 1, the theorema egregium
yields K ≡ −1 (outside the singular equator). Riemann generalized Gauss’ work to
higher dimensions. Erich Worbs writes:
In 1854 Bernhard Riemann (1826–1866) presented three topics for his inaugural
lecture in G¨ottingen. Gauss (1777–1855), in recollection of his own
struggle with Euclid’s parallel axiom, chose – in breaking with tradition –
the third one: On the hypotheses which lie at the foundation of geometry.
In his lecture Riemann presented the fundamentals of a geometry for the
n-dimensional curved metric space (nowadays called Riemannian geometry).
This must have made an extremely deep impression on Gauss, who
at that time was already very weak. Later, on his way home, he spoke with
unusual excitement to WilhelmWeber about the depth of the presentation.
Riemann considered all the 2-dimensional submanifolds of an n-dimensional Riemannian
manifold and computed their Gauss curvature. This family of Gauss curvatures
forms the Riemann curvature tensor. Einstein used the Riemann curvature
tensor in order to intrinsically describe gravitation as the curvature of the
4-dimensional space-time manifold. In the Standard Model of elementary particle
physics, strong interaction and electroweak interaction are intrinsically represented
by the curvature of a principal fiber bundle with the structure group
U(1) × SU(2) × SU(3) (see Vol. III). Here, the structure group describes the possible
gauge transformations.
Hilbert’s no-go theorem for the embedding of the global hyperbolic
Beltrami manifold into the 3-dimensional Euclidean space.
The Nash embedding theorem and the sophisticated regularization
method (hard implicit function theorem).
The elegant method of gauge fixing.
Klein’s projective model of hyperbolic geometry.

5.10 The Poincar´e Model of Hyperbolic Geometry
The Poincar´e model is the most elegant formulation of hyperbolic non-
Euclidean geometry.
Folklore

Hyperbolic parallels and the violation of Euclid’s parallel axiom. In
Euclidean geometry, for any given point P0 outside a given straight line G, there
exists precisely one straight line which does not intersect G. This is called a parallel
straight line to G.
In the hyperbolic geometry of the real hyperbolic plane, geodesic lines are also
called hyperbolic straight lines. Then, for any given point P0 outside a given hyperbolic
straight line G, there exist infinitely many hyperbolic straight lines through
the point P0 which do not intersect G. In other words, there exist infinitely many hyperbolic
parallel straight lines to G which pass through the point P0.
Consequently, the hyperbolic geometry of the real hyperbolic plane represents
a non-Euclidean geometry.
The real (resp. and complex) hyperbolic plane is equipped with the following mathematical
structures:
• complete metric space,
• Riemannian manifold,
• non-compact Riemann su***ce,
• K¨ahler manifold, and
• symplectic manifold.
In what follows we want to discuss this.
The hyperbolic plane as a complete metric space with respect to
geodesic distance.We are given the two points P,Q ∈ HC. Let the curve
C : z = z(τ ), τ0 ≤ τ ≤ τ1
be a geodesic which connects the point P with Q (see Fig. 5.22 on page 315). Using
the so-called geodesic distance defined by
d(P,Q) := l(C),
where l(C) is the hyperbolic arc length of the geodesic C, the complex hyperbolic
plane becomes a metric space. This means that, for arbitrary points P,Q, S ∈ HC,
the following hold:
(M1) d(P,Q) ≥ 0 and d(P,Q) = 0 iff P = Q,
[M2) d(P,Q) = d(Q, P),
(M3) d(P,Q) ≤ d(P, S) + d(S,Q).
Moreover, the complex hyperbolic plane is a complete metric space. By definition,
this means that each Cauchy sequence is convergent.
The symmetry group of the hyperbolic geometry. Consider the M¨obius
transformation40
w =(αz + β)/(γz + δ)
with real coefficients α, β, γ, δ and αδ − βγ =/= 0. Each of these transformations
represents a conformal diffeomorphism from the complex hyperbolic plane HC onto
itself. The set of all these transformations
T : HC →HC
forms a group Sym(HC), which is called the symmetry group of the complex hyperbolic
plane HC. By definition, precisely the invariants under this group are properties
of hyperbolic geometry on HC . Examples are: arc length, angle, su***ce area,
geodesic line, geodesic distance, and Gaussian curvature.
The action of the real symplectic group SL(2,R) on the complex hyperbolic
plane.

5.10.1 Kahler Geometry and the Gaussian Curvature
Many important manifolds arising in mathematics and physics (e.g., Riemann
su***ces) can be equipped with an Hermitean Kahler metric.
Folklore
Erich Kahler’s seminal article On a remarkable Hermitean metric has
grown into a domain in itself. What is even more striking concerning this
article is that more or less every half page, Erich Kahler opens a new path
that has later turned out to be crucial for the development of the subject.
Jean-Piere Bourguignon, 2004
There are the following three fundamental geometries used in physics:
(i) symplectic geometry (geometrical optics and classical mechanics),
(ii) Riemannian und pseudo-Riemannian geometry (general theory of relativity on
gravitation),
(iii) unitary geometry and Hilbert spaces (quantum theory).
Kahler geometry combines these three essential mathematical structures with each
other. In fact, Kahler geometry plays a fundamental role in complex geometry,
algebraic geometry, and string theory. We will study this in later volumes. We refer
to the hints for further reading on K¨ahler geometry to be found on page 350. At
this point, we will only discuss a few basic ideas.

5.10.4 Riemannian Geometry
The doubts about what we may believe about the geometry of physical
space, raised by the work of Gauss, Lobachevsky and B´olayi, stimulated
one of the major creations of the 19th century, Riemannian geometry. The
creator was Bernhard Riemann (1826–1866) – the deepest philosopher of
geometry.
Morris Kline, 1972
It was Riemann, who probably more than anyone else, enriched mathematics
with new ideas. These ideas display an unusual degree of vitality and
impulse the whole of mathematics as well as many branches of physics.
Krysztof Maurin, 1997
Hyperbolic straight lines (i.e., semi-circles centered at the x-axis or straight lines
parallel to the y-axis) are curved compared with Euclidean straight lines. Intuitively,
this is responsible for the nontrivial curvature of the real hyperbolic plane. The main
task of differential geometry is to measure this curvature of the manifold. This was
done by Gauss, Riemann, and ´Elie Cartan in different settings.


由一星于2014-09-04, 04:04进行了最后一次编辑,总共编辑了26次
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-24, 12:17

[ltr]分类“幾何光學”中的页面
以下23个页面属于本分类,共23个页面。
[/ltr]
C

F

M

S































分类

[size]
隐藏分类:
[/size]
[size]



费马原理[编辑]



[/size]
Quantum Field Theory II - 页 3 150px-Pierre_de_Fermat
Quantum Field Theory II - 页 3 Magnify-clip
皮埃尔·德·费马
[size][size][ltr]
费马原理(Fermat principle)最早由法国科学家皮埃尔·德·费马在1662年提出,又名“最短时间原理”:光线传播的路径是需时最少的路径[1]
费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。
费马原理是几何光学的基本定理。用微分变分法可以从费马原理导出以下三个几何光学定律:
[/ltr][/size][/size]

  1. 光线在真空中的直线传播。
  2. 光的反射定律 - 光线在界面上的反射, 入射角必须等于出射角。
  3. 光的折射定律斯涅尔定律)。

[size][size][ltr]
最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。

[/ltr][/size][/size]
[ltr]目录
  [隐藏[/ltr]


[size][size][ltr]

概述[编辑]
[/ltr][/size][/size]
Quantum Field Theory II - 页 3 125px-Reflection_for_Semicircular_Mirror_upright.svg
Quantum Field Theory II - 页 3 125px-Reflection_for_Mixed_Shaped_Mirror.svg
光线从点Q传播至点O时,会被半圆形或混合形镜子反射,最终抵达点P。
[size][size][ltr]
费马原理更正确的版本应是“平稳时间原理”。对于某些状况,光线传播的路径所需的时间可能不是最小值,而是最大值,或甚至是拐值[2]
[/ltr][/size][/size]

  • 平面镜:任意两点的反射路径光程是最小值。
  • 半椭圆形镜子:其两个焦点的光线反射路径不是唯一的,光程都一样,是最大值,也是最小值。
  • 半圆形镜子:其两个端点Q、P的反射路径光程是最大值。
  • 如最右图所示,对于由四分之一圆形镜与平面镜组合而成的镜子,同样这两个点Q、P的反射路径的光程是拐值。

[size][size][ltr]
光的反射[编辑]
平面反射[编辑]
[/ltr][/size][/size]
Quantum Field Theory II - 页 3 200px-Reflection_of_light
Quantum Field Theory II - 页 3 Magnify-clip
光在平面上的反射

Quantum Field Theory II - 页 3 200px-Reflection_path_length
Quantum Field Theory II - 页 3 Magnify-clip
平面反射的光程
[size][size][ltr]
光从P点出发射向x点,反射到Q点。
P 点到 x点的距离 Quantum Field Theory II - 页 3 4516901b02c7e6e4fb3e664c3ab9a643
Q 点 到 x 点的距离 Quantum Field Theory II - 页 3 2e0783954325581f9dc8a7e6231500fc
从点P到点Q的光程 D 为
Quantum Field Theory II - 页 3 Cf2c86bcb3593beb21d5bd1053c415e7 。
根据费马原理,光线在真空中传播的路径是光程为极值的路径。
取光程 Quantum Field Theory II - 页 3 F623e75af30e62bbd73d6df5b50bb7b5 对 Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6 的导数,令其为零:
Quantum Field Theory II - 页 3 4af3e40af678e12740d1a98a9d8a06f0Quantum Field Theory II - 页 3 D523637225f826c0c95283a11613eb0c 。
但其中
Quantum Field Theory II - 页 3 2b8a1b4db51fa7288f64f7a37fc4160e

Quantum Field Theory II - 页 3 D15689985ff652ce0ded0494d79e4aa4 。

Quantum Field Theory II - 页 3 Dfedf89e9257beb95ee4ffab786164acQuantum Field Theory II - 页 3 26c46e2620927a86952ab7d7874eed77
这就是反射定律
设l =30
图示反射光程随 X 的变化,当x= 15 时,显然光程最短。
半球面反射[编辑]
[/ltr][/size][/size]
Quantum Field Theory II - 页 3 150px-Reflection_for_Semicircular_Mirror.svg
Quantum Field Theory II - 页 3 Magnify-clip
光线从点Q传播至点O时,会被半圆形镜子反射,最终抵达点P。
Quantum Field Theory II - 页 3 150px-Semi_circle_reflection
Quantum Field Theory II - 页 3 Magnify-clip
R=5 半圆镜的反射点在圆的顶点,光程最长=2.82R
[size][size][ltr]
球面的半径=R
光线从直径一端Q射向球面,反射到直径另一端P
光程Quantum Field Theory II - 页 3 4c73a8dddd648541080edb1ba4fd4815
Quantum Field Theory II - 页 3 373f4929387a174dfd4b1dcbc5c58857;
所以
Quantum Field Theory II - 页 3 8f7c0ae48ec7a04c686d7ee3be3a3d34
根据费马原理, D'=0
Quantum Field Theory II - 页 3 Fc18b6ac750e23c60ac06ebf9bfb59c0
解之, 得 Quantum Field Theory II - 页 3 E11729b0b65ecade3fc272548a3883fc,代入D得到:
光程Quantum Field Theory II - 页 3 Fd00c79d5a3560515d503ebd6fd8dc0b,乃是一个最大值=2.8R;(最小值光程是从直径一端到Q另一端P,光程=2R)
光的折射[编辑]
[/ltr][/size][/size]
Quantum Field Theory II - 页 3 250px-Snellslaw_diagram_B
Quantum Field Theory II - 页 3 Magnify-clip
光线从介质1的点Q,在点O传播进入介质2,发生折射,最后抵达介质2的点P。
[size][size][ltr]
如右图所示,假设,介质1、介质2的折射率分别为 Quantum Field Theory II - 页 3 Ca28d2957bcfd844805dfd1c339dfc2f 、Quantum Field Theory II - 页 3 27e7b1346e011cf2896a04df87832534 ,光线从介质1在点O传播进入介质2,则斯涅尔定律以方程表达为
Quantum Field Theory II - 页 3 6f80b79c28a3b01428480aaa54669dc8 ;
其中,Quantum Field Theory II - 页 3 92c9134527161fd7453fe848b821d8c7 为入射角,Quantum Field Theory II - 页 3 0b8633fe1643477bd08df0dfe4749835 为折射角。
从费马原理,可以推导出斯涅尔定律。通过设定光程对于时间的导数为零,可以找到“平稳路径”,这就是光线传播的路径。光线在介质1与介质2的速度分别为
Quantum Field Theory II - 页 3 96bbb160e2f33efb77f4e924265d134e 、Quantum Field Theory II - 页 3 8c67d4347ea7ce07cfd0f173835ddaa5 ;
其中,Quantum Field Theory II - 页 3 4a8a08f09d37b73795649038408b5f33 是真空光速。
由于介质会减缓光线的速度,折射率 Quantum Field Theory II - 页 3 Ca28d2957bcfd844805dfd1c339dfc2f 和 Quantum Field Theory II - 页 3 27e7b1346e011cf2896a04df87832534 都大于 Quantum Field Theory II - 页 3 C4ca4238a0b923820dcc509a6f75849b 。
从点Q到点P的传播时间 Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3 为
Quantum Field Theory II - 页 3 2f6d36a76c72f0779f4143426e80c4de 。
根据费马原理,光线传播的路径是所需时间为极值的路径,取传播时间 Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3 对 Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6 的导数,设定其为零:
Quantum Field Theory II - 页 3 7fd1da92af1af733417be76ae5d2d1b3 。
其中 Quantum Field Theory II - 页 3 2b8a1b4db51fa7288f64f7a37fc4160e
Quantum Field Theory II - 页 3 4942e3dc243730dbc3988f10581bb355
因此得到传播速度与折射角的关系式:
Quantum Field Theory II - 页 3 998cd009a8d80c7823907f0398903cf0 。
将传播速度与折射率的关系式代入,就会得到斯涅尔定律:
Quantum Field Theory II - 页 3 6f80b79c28a3b01428480aaa54669dc8 。
运动学[编辑]
主条目:最速降线问题
伯努利家族约翰·伯努利在解决最速降线问题时曾利用到费马原理。[3]他将小球运动类比作光线的运动,从而得出最速降线为摆线

参阅[编辑]
[/ltr][/size][/size]
[size][size][ltr]
参考文献[编辑]
[/ltr][/size][/size]

  1. ^ Dugas, R., A History Of Mechanics, New York: Dover Publications, Inc.. 1988:  pp. 255ff, 274, 345-346, ISBN 0-486-65632-2
  2. ^ Hecht, Eugene, Optics. 4th, United States of America: Addison Wesley. 2002:  pp. 106-111, 141, ISBN 0-8053-8566-5 (英文)
  3. ^ http://www.guokr.com/article/22018/ 复活节闲扯:一场激动人心的数学公开挑战赛,果壳网。

[size][size]
分类
[/size][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-24, 12:18

Euler–Lagrange equation

From Wikipedia, the free encyclopedia


[ltr]In calculus of variations, the Euler–Lagrange equationEuler's equation,[1] or Lagrange's equation although the latter name is ambiguous (see disambiguation page), is adifferential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange in the 1750s.
Because a differentiable functional is stationary at its local maxima and minima, the Euler–Lagrange equation is useful for solving optimization problems in which, given some functional, one seeks the function minimizing (or maximizing) it. This is analogous to Fermat's theorem in calculus, stating that at any point where a differentiable function attains a local extremum, its derivative is zero.
In Lagrangian mechanics, because of Hamilton's principle of stationary action, the evolution of a physical system is described by the solutions to the Euler–Lagrange equation for the action of the system. In classical mechanics, it is equivalent to Newton's laws of motion, but it has the advantage that it takes the same form in any system of generalized coordinates, and it is better suited to generalizations. In classical field theory there is an analogous equation to calculate the dynamics of a field.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

History[edit]
The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in a fixed amount of time, independent of the starting point.
Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's method and applied it to mechanics, which led to the formulation ofLagrangian mechanics. Their correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766.[2]
Statement[edit]
The Euler–Lagrange equation is an equation satisfied by a function, q, of a real argument, t, which is a stationary point of the functional
Quantum Field Theory II - 页 3 Fcbb2da13495c1c12bef98ab883e9abd
where:
[/ltr][/size]

  • q is the function to be found:

[size][ltr]
Quantum Field Theory II - 页 3 0163ce2c2f0a79b4da0cb9c704f03985such that q is differentiable, q(a) = xa, and q(b) = xb;
[/ltr][/size]

  • q′ is the derivative of q:Quantum Field Theory II - 页 3 6eacf3691f5c195a7be14edd1e08256a

[size][ltr]
TX being the tangent bundle of X defined byQuantum Field Theory II - 页 3 Ccf1916267ff0f5b630348e839a5a4ba ;
[/ltr][/size]
[size][ltr]
The Euler–Lagrange equation, then, is given by

[/ltr][/size]
Quantum Field Theory II - 页 3 82f0e8b76e7079a527bc08015788c49c
[size][ltr]

where Lx and Lv denote the partial derivatives of L with respect to the second and third arguments, respectively.
If the dimension of the space X is greater than 1, this is a system of differential equations, one for each component:
Quantum Field Theory II - 页 3 Cda8c05dce62570ca82cdc9a0ed6792d
[/ltr][/size][th]Derivation of one-dimensional Euler–Lagrange equation[/th]

[th]Alternate derivation of one-dimensional Euler–Lagrange equation[/th][size][ltr]

Examples[edit]
A standard example is finding the real-valued function on the interval [ab], such that f(a) = c and f(b) = d, the length of whose graph is as short as possible. The length of the graph of f is:
Quantum Field Theory II - 页 3 B4b1770b016592cc1dfa6b519667a061
the integrand function being L(xyy′) = √1 + y′ ² evaluated at (xyy′) = (xf(x), f′(x)).
The partial derivatives of L are:
Quantum Field Theory II - 页 3 Db96b51dc8d27101280c558b89950d0e
By substituting these into the Euler–Lagrange equation, we obtain
Quantum Field Theory II - 页 3 6d6b36f4591ae2dd72324c2bbb660106
that is, the function must have constant first derivative, and thus its graph is a straight line.
Classical mechanics[edit]
Basic method[edit]
To find the equations of motions for a given system (whose potential energy is time-independent), one only has to follow these steps:
[/ltr][/size]

  • From the kinetic energy Quantum Field Theory II - 页 3 B9ece18c950afbfa6b0fdbfa4ff731d3, and the potential energy Quantum Field Theory II - 页 3 5206560a306a2e085a437fd258eb57ce, compute the Lagrangian Quantum Field Theory II - 页 3 F798ab44bef1cadade43191a28b2fa6b.
  • Compute Quantum Field Theory II - 页 3 Ee1c7ddc20fb44265fb6162e9016d849.
  • Compute Quantum Field Theory II - 页 3 19ac08f1f57fed63c992773b773c7ede and from it, Quantum Field Theory II - 页 3 35f2d5f0abeb4b945a135b5c6fc70a73. It is important that Quantum Field Theory II - 页 3 Fccdf756e1bec8117f6bd9539cf9fe47 be treated as a complete variable in its own right, and not as a derivative.
  • Equate Quantum Field Theory II - 页 3 Beb173e98300fb9aed683c7aa13f1f05. This is the Euler–Lagrange equation.
  • Solve the differential equation obtained in the preceding step. At this point, Quantum Field Theory II - 页 3 Fccdf756e1bec8117f6bd9539cf9fe47 is treated "normally". Note that the above might be a system of equations and not simply one equation.

[size][ltr]
Particle in a conservative force field[edit]
The motion of a single particle in a conservative force field (for example, the gravitational force) can be determined by requiring the action to be stationary, by Hamilton's principle. The action for this system is
Quantum Field Theory II - 页 3 58d5306e5765433276e1f87414e9ef44
where x(t) is the position of the particle at time t. The dot above is Newton's notation for the time derivative: thus (t) is the particle velocity, v(t). In the equation above, L is theLagrangian (the kinetic energy minus the potential energy):
Quantum Field Theory II - 页 3 D0a8dd27585062b99c9e090ed418e436
where:
[/ltr][/size]

  • m is the mass of the particle (assumed to be constant in classical physics);
  • vi is the i-th component of the vector v in a Cartesian coordinate system (the same notation will be used for other vectors);
  • U is the potential of the conservative force.

[size][ltr]
In this case, the Lagrangian does not vary with its first argument t. (By Noether's theorem, such symmetries of the system correspond to conservation laws. In particular, the invariance of the Lagrangian with respect to time implies the conservation of energy.)
By partial differentiation of the above Lagrangian, we find:
Quantum Field Theory II - 页 3 3c0bf0b4c2b070c43ee29feff8768b76
where the force is F = −U (the negative gradient of the potential, by definition of conservative force), and p is the momentum. By substituting these into the Euler–Lagrange equation, we obtain a system of second-order differential equations for the coordinates on the particle's trajectory,
Quantum Field Theory II - 页 3 359873902f216a476b1e79ad15b0d09b
which can be solved on the interval [t0t1], given the boundary values xi(t0) and xi(t1). In vector notation, this system reads
Quantum Field Theory II - 页 3 9f8ca410509c7ddb9dd3467628c7056c
or, using the momentum,
Quantum Field Theory II - 页 3 6eaec68e29ec352021e6fe6592076ae1
which is Newton's second law.
Variations for several functions, several variables, and higher derivatives[edit]
Single function of single variable with higher derivatives[edit]
The stationary values of the functional
Quantum Field Theory II - 页 3 A502eb7022b03884d406d6f5ef622df6
can be obtained from the Euler–Lagrange equation[3]
Quantum Field Theory II - 页 3 Bea701fcbf0ff6ae96fe4afcb57a479c
under fixed boundary conditions for the function itself as well as for the first Quantum Field Theory II - 页 3 A438673491daae8148eae77373b6a467 derivatives (i.e. for all Quantum Field Theory II - 页 3 21af6b2f5439bb2c17416e8976f60d2d). The endpoint values of the highest derivative Quantum Field Theory II - 页 3 6d631c56028e5129643564c946a966e8 remain flexible.
Several functions of one variable[edit]
If the problem involves finding several functions (Quantum Field Theory II - 页 3 8b83***863815c8a9a0106528e02650) of a single independent variable (Quantum Field Theory II - 页 3 9dd4e461268c8034f5c8564e155c67a6) that define an extremum of the functional
Quantum Field Theory II - 页 3 Fd54c9b17a87e46c0c24e2e1dc3db939
then the corresponding Euler–Lagrange equations are[4]
Quantum Field Theory II - 页 3 8cc2ad674e0cd0426fb1e529273b2d58
Single function of several variables[edit]
A multi-dimensional generalization comes from considering a function on n variables. If Ω is some su***ce, then
Quantum Field Theory II - 页 3 Be771dae942a49056cbd7a514103b4b4
is extremized only if f satisfies the partial differential equation
Quantum Field Theory II - 页 3 1004eb320739afdab36be4062e27784d
When n = 2 and Quantum Field Theory II - 页 3 F641723788f91d4c5298143486635c80 is the energy functional, this leads to the soap-film minimal su***ce problem.
Several functions of several variables[edit]
If there are several unknown functions to be determined and several variables such that
Quantum Field Theory II - 页 3 4fe6b0cb4e2680092795c3f23f6970d7
the system of Euler–Lagrange equations is[3]
Quantum Field Theory II - 页 3 0cba979e4abc3d215427a2dc06e83607
Single function of two variables with higher derivatives[edit]
If there is a single unknown function f to be determined that is dependent on two variables x1 and x2 and if the functional depends on higher derivatives of f up to n-th order such that
Quantum Field Theory II - 页 3 471886a0dd261c4eb989ac279fcb1028
then the Euler–Lagrange equation is[3]
Quantum Field Theory II - 页 3 17b305ef38f28f283886de651d8c57d3
which can be represented shortly as:
Quantum Field Theory II - 页 3 5b80656808639f3281d54dbeb2802c58
where Quantum Field Theory II - 页 3 5778369dcb64d7155b77fa723c778938 are indices that span the number of variables, that is they go from 1 to 2. Here summation over the Quantum Field Theory II - 页 3 5778369dcb64d7155b77fa723c778938 indices is implied according to Einstein notation.

Several functions of several variables with higher derivatives[edit]
If there is are p unknown functions fi to be determined that are dependent on m variables x1 ... xm and if the functional depends on higher derivatives of the fi up to n-th order such that
Quantum Field Theory II - 页 3 4be9e1cc34e25f409651fe58829ba601
where Quantum Field Theory II - 页 3 F05693e012c676e9537124ccc7ea1faa are indices that span the number of variables, that is they go from 1 to m. Then the Euler–Lagrange equation is
Quantum Field Theory II - 页 3 31085fc5a9326398100ff1e587eb5598
where summation over the Quantum Field Theory II - 页 3 F05693e012c676e9537124ccc7ea1faa is implied according to Einstein notation. This can be expressed more compactly as
Quantum Field Theory II - 页 3 5056f444f3f9eabcb4f95113270a46c1
See also[edit]
[/ltr][/size]

[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Fox, Charles (1987). An introduction to the calculus of variations. Courier Dover Publications. ISBN 978-0-486-65499-7.
  2. Jump up^ A short biography of Lagrange
  3. Jump up to:a b c Courant, R. and Hilbert, D., 1953, Methods of Mathematical Physics: Vol I, Interscience Publishers, New York.
  4. Jump up^ Weinstock, R., 1952, Calculus of Variations With Applications to Physics and Engineering, McGraw-Hill Book Company, New York.

[size][ltr]
References[edit]
[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-25, 04:44

哈密顿-雅可比方程[编辑]



[ltr]在这篇文章内,矢量标量分别用粗体斜体显示。例如,位置矢量通常用Quantum Field Theory II - 页 3 517713571d01a89e2826c50436ce63de表示;而其大小则用Quantum Field Theory II - 页 3 C4f4c3516ae8626abc95626b5686a2b1来表示。
[/ltr]
Quantum Field Theory II - 页 3 150px-WilliamRowanHamilton
Quantum Field Theory II - 页 3 Magnify-clip
威廉·哈密顿

Quantum Field Theory II - 页 3 150px-Carl_Jacobi
Quantum Field Theory II - 页 3 Magnify-clip
卡尔·雅可比
[size][ltr]
物理学里,哈密顿-雅可比方程 (Hamilton-Jacoby equation,HJE) 是经典力学的一种表述。哈密顿-雅可比方程、牛顿力学拉格朗日力学哈密顿力学,这几个表述是互相全等的。而哈密顿-雅可比方程在辨明保守物理量方面,特别有用处。有时候,虽然物理问题的本身无法完全解析,哈密顿-雅可比方程仍旧能够正确的辨明保守的物理量。
HJE 是经典哈密顿量一个正则变换,经过该变换得到的结果是一个一阶非线性偏微分方程,其解答描述了系统的行为。与哈密顿运动方程的不同之处在于 HJE 是一个偏微分方程,每个变量对应于一个坐标,而哈密顿方程是一个一阶线性方程组,每两个方程对应于一个坐标。HJE 可以漂亮地解析一些重要问题,例如开普勒问题
HJE 是唯一能够将粒子运动表达为波动的一种力学表述。因此,HJE 满足了一个长久以来理论物理的研究目标(早至 18 世纪,约翰·伯努利和他的学生皮埃尔·莫佩尔蒂的年代);那就是,寻找波传播与粒子运动的相似之处。力学系统的波动方程薛定谔方程很相似;但是,并不相同。稍后会有详细说明。HJE 被认为是从经典力学进入量子力学最近的门阶。

[/ltr][/size]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

数学表述[编辑]
哈密顿-雅可比方程是一个一阶非线形偏微分方程。用数学表达
Quantum Field Theory II - 页 3 6ebe8298ea94c55b7deb430c14576030 ;
其中,Quantum Field Theory II - 页 3 350860cf68ca8fd18af87b6ee9044fc7 是哈密顿量,未知函数 Quantum Field Theory II - 页 3 6dab5d445260d165559c373010d2891a称为哈密顿主函数Quantum Field Theory II - 页 3 8a9ce8c140c8e13322def789879f70ea 是广义座标Quantum Field Theory II - 页 3 D5564ef2b4472f46a5d506b75cc71e71 是积分常数,Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e 是时间。
假若能够找到哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 的形式,就可以计算出广义坐标 Quantum Field Theory II - 页 3 8a9ce8c140c8e13322def789879f70ea 与广义动量 Quantum Field Theory II - 页 3 C4a7a9077c20dbbc488535e45098a027 随时间的演变。这样,可以完全地解析物理系统随时间的演化。
各种力学表述的比较[编辑]
哈密顿-雅可比方程是一个一阶非线形偏微分方程;其中,函数 Quantum Field Theory II - 页 3 6dab5d445260d165559c373010d2891a 有 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个广义坐标 Quantum Field Theory II - 页 3 C5f5726a66701bf2e2e350468164a37b,和 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个独立的积分常数Quantum Field Theory II - 页 3 D5564ef2b4472f46a5d506b75cc71e71 。在 HJE 中,哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e有一个很有意思的属性,它是一种经典作用量
与拉格朗日力学的拉格朗日方程比较,哈密顿力学里使用共轭动量而非广义速度。并且,哈密顿方程乃是一组 Quantum Field Theory II - 页 3 406b29ee433abc831658b659945bdab0 个一阶微分方程,用来表示 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个广义坐标和 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个广义动量随时间的演变,而拉格朗日方程则是一组 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个二阶微分方程,用来表示 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个广义坐标随时间的演变。
因为 HJE 等价于一个最小积分问题(像哈密顿原理), HJE 可以用于许多关于变分法的问题。更推广地,在数学与物理的其它分支,像动力系统辛几何量子混沌理论,都可以用 HJE 来解析问题。例如,HJE 可以用来找寻黎曼流形测地线,这是黎曼几何一个很重要的变分法问题。
导引[编辑]
哈密顿力学里,正则变换将一组正则坐标 Quantum Field Theory II - 页 3 26ee3b943e8cf889cdd1459282d5516e 变换为一组新的正则坐标 Quantum Field Theory II - 页 3 15656a40848809b89e2860cec90356db ,而同时维持哈密顿方程的型式(称为型式不变性)。旧的哈密顿方程为
Quantum Field Theory II - 页 3 Aa629bfcae37f13fb96464a4995dd742 ,Quantum Field Theory II - 页 3 Bace7c16b8336768003db14439573bbf ;
新的哈密顿方程为
Quantum Field Theory II - 页 3 12964220d15d64ed1aee5c2ed9cb2949 ,Quantum Field Theory II - 页 3 C3a253e9e54af48b62b1620bce85a060 ;
这里,Quantum Field Theory II - 页 3 679d0e2fddd5bf3eb0d535d38750ffb7 、Quantum Field Theory II - 页 3 9936c7c6852bf0b4a25a3ac59f7b6689 分别为旧的哈密顿量与新的哈密顿量,Quantum Field Theory II - 页 3 E358efa489f58062f10dd7316b65649e 是时间。
假若,使用第二型生成函数 Quantum Field Theory II - 页 3 Fbb8fb1b4e3b90f9953a31747b6ec8af 来生成新正则坐标,则新旧正则坐标的关系为
Quantum Field Theory II - 页 3 D3efee6437141e7d0520d049c0391197 ,Quantum Field Theory II - 页 3 E50963552550c155370ff576f55d7fa2 。
而新旧哈密顿量的关系为
Quantum Field Theory II - 页 3 D1e354af6f8fc07482f316e035e2295a 。
(条目正则变换有更详细的说明。)
哈密顿主函数[编辑]
假若,可以找到一个第二型生成函数 Quantum Field Theory II - 页 3 02c77071c2d814bd9a9c142865c09cd7 。这生成函数使新哈密顿量 Quantum Field Theory II - 页 3 7390e01cdc92730be076d649e0ded7fd 恒等于 0 。称这个生成函数 Quantum Field Theory II - 页 3 D49cd24305b1c6f878fa05a41bd4cb1e 为哈密顿主函数。那么,新哈密顿量 Quantum Field Theory II - 页 3 7390e01cdc92730be076d649e0ded7fd 所有的偏导数都等于 0 。哈密顿方程也变得非常的简单:
Quantum Field Theory II - 页 3 89156f507368bf325014bf321ce00403 。
这样,新正则坐标都成为运动常数 Quantum Field Theory II - 页 3 1a37951342a219ca54a0fdb4f14f4304 、 Quantum Field Theory II - 页 3 1a88471987665e27fb7572e3d7217499 :
Quantum Field Theory II - 页 3 14837e86043787324b3aa06da0002ede ,Quantum Field Theory II - 页 3 62328c5ce68ce5923e2c4782baac1ed8 。
由于 Quantum Field Theory II - 页 3 604f97b6d654e9fa1aa8a9c35a9709ba ,代入旧哈密顿量,则可得到哈密顿-雅可比方程:
Quantum Field Theory II - 页 3 Dee67823de86cff50d74600747d7bbe0 。
解析问题的重要关键是必须找到哈密顿主函数 Quantum Field Theory II - 页 3 188a2a2d5ce66d9ff71f2beb9ebf9c29 的方程。一旦找到这方程,因为
Quantum Field Theory II - 页 3 252228ec24eb2ea11ecaad7f1c99f531 ,(1)Quantum Field Theory II - 页 3 C247f8be0bc2cc69b6dc205cfd13db58 。(2)
给予 Quantum Field Theory II - 页 3 0fa3c00c96bf5862ce62c85c18e4b0ea 与 Quantum Field Theory II - 页 3 0dad9ef8dd232ad6f3ee4649e5eb1573 在时间 Quantum Field Theory II - 页 3 Aa31f363825e6471403839e9ff46e7be 的初始值, Quantum Field Theory II - 页 3 87eb29c29a4c664178d309ddaba85600 与 Quantum Field Theory II - 页 3 0216b7549cb71ae5340816bbef20d75b ,可以求出运动常数 Quantum Field Theory II - 页 3 1432cad45c9b806e004412c40430fa9aQuantum Field Theory II - 页 3 5e24e86267af0306863d03c9121fc757 。知道这两组运动常数,立刻可以得到旧正则坐标 Quantum Field Theory II - 页 3 0fa3c00c96bf5862ce62c85c18e4b0ea 与 Quantum Field Theory II - 页 3 0dad9ef8dd232ad6f3ee4649e5eb1573 随时间的演变。
哈密顿特征函数[编辑]
假设,哈密顿量不显含时:Quantum Field Theory II - 页 3 6c30074e3bfb8733d97173c293d7717d 。那么,
Quantum Field Theory II - 页 3 712b64deb1fa42c3d7f36d1abfd973cf 。
哈密顿量是一个运动常数,标记为 Quantum Field Theory II - 页 3 2903960a73c5bf0319001ae5e3b91172 :
Quantum Field Theory II - 页 3 61e5bd086da661807ddca0b27bc258eb ,Quantum Field Theory II - 页 3 2d46ab9f81feccfdcc6c3933281c5d98 。
哈密顿主函数可以分离成两部分:
Quantum Field Theory II - 页 3 Df4a468aedfe7303328b5b84107e60c2 ;
其中,不含时间的函数 Quantum Field Theory II - 页 3 52d877086058e09b48b08f24eb2939ae 称为哈密顿特征函数
思考一个新的正则变换。设定哈密顿特征函数 Quantum Field Theory II - 页 3 52d877086058e09b48b08f24eb2939ae 为一个第二型生成函数 Quantum Field Theory II - 页 3 21deb5c93cef58f00f9ba61cc69e997f :
Quantum Field Theory II - 页 3 1d54a3f4e7551270d33da08f260db944 ,Quantum Field Theory II - 页 3 6dbeb5c32a73f59bb7cb182baa73c8f2 。
那么,哈密顿-雅可比方程变为
Quantum Field Theory II - 页 3 6566ad16b7808758cdba4745598c7afd 。
由于哈密顿特征函数不显含时,新旧哈密顿量的关系为
Quantum Field Theory II - 页 3 1a3bff4a3fd50f8a631f7df53dab05cc ;
新正则坐标随时间的导数变为
Quantum Field Theory II - 页 3 C4032cb4d3731133519a3fdade6aa822 ,Quantum Field Theory II - 页 3 67f208c287176f5a86a325020d97d603 ,Quantum Field Theory II - 页 3 551460ea932ecc0770adbc5314f26c08设定 Quantum Field Theory II - 页 3 8e6ba967645c302e1f2a60ec9c341e5c 为 Quantum Field Theory II - 页 3 2903960a73c5bf0319001ae5e3b91172 ,Quantum Field Theory II - 页 3 293ff1e317497d6dec416191a240837c ,Quantum Field Theory II - 页 3 551460ea932ecc0770adbc5314f26c08Quantum Field Theory II - 页 3 D4225df29ee5efd68caf20614f27c22f 。
所以,新正则坐标变为
Quantum Field Theory II - 页 3 14837e86043787324b3aa06da0002ede ,Quantum Field Theory II - 页 3 F97f7b7f6821364b0f8e36c6a4a1cbbe ,Quantum Field Theory II - 页 3 5d49ecba327d86d86eac836a2a882c92 。
假若,能找到哈密顿特征函数 Quantum Field Theory II - 页 3 52d877086058e09b48b08f24eb2939ae ,给予旧广义坐标 Quantum Field Theory II - 页 3 0fa3c00c96bf5862ce62c85c18e4b0ea 与旧广义动量 Quantum Field Theory II - 页 3 0dad9ef8dd232ad6f3ee4649e5eb1573 在时间 Quantum Field Theory II - 页 3 Aa31f363825e6471403839e9ff46e7be 的初始值, Quantum Field Theory II - 页 3 87eb29c29a4c664178d309ddaba85600 与 Quantum Field Theory II - 页 3 0216b7549cb71ae5340816bbef20d75b ,依照前面所述方法,就可以求出旧正则坐标随时间的演变。
分离变量法[编辑]
哈密顿-雅可比方程最有用的时候,是当它可以使用分离变量法,来直接地辨明运动常数。假设,HJE 可以分为两部分。一部分只跟广义坐标 Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed 、哈密顿主函数的偏导数 Quantum Field Theory II - 页 3 1dbc2cfc03112a3aecb960b12e0a0451 有关,标记这部分为 Quantum Field Theory II - 页 3 Db36b1b9393e0d13e105276e11771fa2 。另一部分跟Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed 、 Quantum Field Theory II - 页 3 1dbc2cfc03112a3aecb960b12e0a0451 无关。对于这状况,哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 可以分离为两个函数。一个函数 Quantum Field Theory II - 页 3 9654dbffde855ad3c67ca9fb2ec0dd14 除了广义坐标 Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed 以外,跟任何其它广义坐标无关。另外一个函数 Quantum Field Theory II - 页 3 62e8c1d40adeba4e4ce32722b4e64526 跟 Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed 无关。
Quantum Field Theory II - 页 3 F5b1d4ea2d0f639d05294173c4bfe7b8
由于每一个广义动量都是运动常数,Quantum Field Theory II - 页 3 74c6e665e65c6081b8cb20c058855922 ,函数 Quantum Field Theory II - 页 3 9654dbffde855ad3c67ca9fb2ec0dd14 只跟广义座标 Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed有关:
Quantum Field Theory II - 页 3 3b7f3cb9f9ec4f40a1601fc818c8a825 ,Quantum Field Theory II - 页 3 4a01cc00787e63c00fbe7399b898e294 。
若将哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 代入 HJE,则可以观察到,Quantum Field Theory II - 页 3 E918a84d01596bd974722e3a132237ed 只出现于函数 Quantum Field Theory II - 页 3 19df1c2726ed43128440c1157f72a937 内部,而不出现于 HJE 的任何其它地方。所以,函数 Quantum Field Theory II - 页 3 19df1c2726ed43128440c1157f72a937 必须等于常数(在这里标记为 Quantum Field Theory II - 页 3 81399f12177eaaed6527b60e486acb80)。这样,可得到一个一阶常微分方程
Quantum Field Theory II - 页 3 Dcaa48c8aa65a542603a5d0e099d2ad5 。
在某些问题里,很幸运地,函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 可以完全的分离为 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个函数 Quantum Field Theory II - 页 3 1fb14d0c5977eefc114db4b134452c8d
Quantum Field Theory II - 页 3 35e41a7dea270bf76d17cf65f52cd9e4 。
这些问题的偏微分方程可以分离为 Quantum Field Theory II - 页 3 8d9c307cb7f3c4a32822a51922d1ceaa 个常微分方程。
哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 的可分性,相关于哈密顿量和广义坐标的选择。假若,一个物理系统符合施特克尔条件 (Staeckel conditions) ,则哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 可以完全分离。以下为用几种正交座标来完全分离 HJE 的例子。
球坐标系[编辑]
采用球坐标 Quantum Field Theory II - 页 3 023f8ca15c4992f48dddfae106f1609c ,假设一个物理系统的哈密顿量为
Quantum Field Theory II - 页 3 28a6c09bb8a137a0a5c385fc7b2a68ef ;
其中,Quantum Field Theory II - 页 3 B892e53572551a26fd4f7c932a9af0de 是广义动量,Quantum Field Theory II - 页 3 4c614360da93c0a041b22e537de151eb 为位势函数,不含时间。
那么,哈密顿-雅可比方程可以表达为
Quantum Field Theory II - 页 3 155b42a663ce57226477168655b7b17a
其中,Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 是哈密顿主函数。
假若,位势函数 Quantum Field Theory II - 页 3 06b0e82c9fef61e384389a62d412b1ca 的形式可以进一步设定为
Quantum Field Theory II - 页 3 Ef09ac28f265643c9da8995ab66cdd32 ;
其中, Quantum Field Theory II - 页 3 Cdb3d55e57244d4d5219988446927d2f 、 Quantum Field Theory II - 页 3 83a6f0eb966dae21ca6b19cafa0f4bdb 、 Quantum Field Theory II - 页 3 5faf659847e3535ca5432907bad50191 ,都是任意函数;则 HJE 是完全可分的。将完全分离的解答 Quantum Field Theory II - 页 3 1bdfd4f31683ccca907a6f539ef5e834 代入 HJE ,会得到方程
Quantum Field Theory II - 页 3 Ee46d2da4fe48b86e550b83a6ccb4893
变量 Quantum Field Theory II - 页 3 7f20aa0b3691b496aec21cf356f63e04 只出现于公式左手边的第三个方括号内;其它变量都不出现于公式的这部分。所以,可以将这部分孤立出来,成为一个常微分方程:
Quantum Field Theory II - 页 3 3cf9f6e2d5bdcf11de6c5d4ec50dacce ;
其中,Quantum Field Theory II - 页 3 02ba488bf43ec135aa9f28fe4552b626 是运动常数
简化的 HJE 跟 Quantum Field Theory II - 页 3 7f20aa0b3691b496aec21cf356f63e04 无关:
Quantum Field Theory II - 页 3 3a4e2d9f9c89adb898a68ceffb3be644
同样地,可以将变量 Quantum Field Theory II - 页 3 50d91f80cbb8feda1d10e167107ad1ff 出现的部分孤立出来,成为一个常微分方程:
Quantum Field Theory II - 页 3 132cd01f3d6433d7184464b6079af542 ;
其中,Quantum Field Theory II - 页 3 Ba4245ae42bd1a5b9c3efa2a0a83d672 是运动常数。
剩下的是一个径向距离函数 Quantum Field Theory II - 页 3 94a209892ce080674ebb95fee2a12fc5 的常微分方程。:
Quantum Field Theory II - 页 3 D061f4587205f30a627cf56ed33e4d39 。
这样,可以完全地分离 HJE 。
椭圆柱坐标系[编辑]
采用椭圆柱坐标 Quantum Field Theory II - 页 3 A415ad17b5f00d32a166785c0b4f7e28 ,假设假设一个物理系统的哈密顿量为
Quantum Field Theory II - 页 3 85063385997d1fa91f709918aaecfc1b
其中,Quantum Field Theory II - 页 3 512147a1c0fdcd1a69d095665768e0b4 是广义动量,Quantum Field Theory II - 页 3 4c614360da93c0a041b22e537de151eb 为位势函数,不含时间。
那么,哈密顿-雅可比方程可以表达为
Quantum Field Theory II - 页 3 903db3f69a017635f9024be412a6cfa3
假若,位势函数 Quantum Field Theory II - 页 3 519b0efca0c4b711db3582e67f462c2c 的形式可以进一步设定为
Quantum Field Theory II - 页 3 602a21b1543b40859b36122e08c7e119 ;
其中,Quantum Field Theory II - 页 3 A4667b0757080e180051939d9f76148f 、 Quantum Field Theory II - 页 3 615ab9b1b0543a820ae0c45f5ed46129 、 Quantum Field Theory II - 页 3 2104dbe4d399bebaa79082ee3d12b099 ,都是任意函数;则 HJE 是完全可分的。猜想一个完全分离解答 Quantum Field Theory II - 页 3 3952183d689d30644b9ec2af33221893 。将这猜想公式代入 HJE ,
Quantum Field Theory II - 页 3 A06b403e4cd180771ec7eb8c337d0943
公式左手边的前两个项目只跟变量 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 有关;其它的项目都跟 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 无关。所以,可以将那两个项目分离出来,成为一个常微分方程:
Quantum Field Theory II - 页 3 5f633ec04789c21714a54b85ded7ce77 ;
其中,Quantum Field Theory II - 页 3 165fd98d79eaed350d334ecc4a957395 是运动常数。
简化的 HJE 跟 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 有关:
Quantum Field Theory II - 页 3 F38c5bf9e85e1204bdcdc78d48061b02
这公式又可以分离成两个相互独立的常微分方程:
Quantum Field Theory II - 页 3 11e0b5674aa530d07e9a715d8d911996Quantum Field Theory II - 页 3 4263419f8f678e9551d86f74d2e1d5e7
其中,Quantum Field Theory II - 页 3 A15b24459ae77027ea574a7c837ce930 是运动常数。
这样,可以完全地分离 HJE 。
抛物柱面坐标系[编辑]
采用抛物柱面坐标 Quantum Field Theory II - 页 3 72eac395f74c42c217eec5d3e090c234 ,假设假设一个物理系统的哈密顿量为
Quantum Field Theory II - 页 3 2bc92eae02fa1bcfe93ddf379867cd36 ;
其中,Quantum Field Theory II - 页 3 10971e8cb53cb4ee595825e58dfaa7d6 是广义动量,Quantum Field Theory II - 页 3 4c614360da93c0a041b22e537de151eb 为位势函数,不含时间。
那么,哈密顿-雅可比方程可以表达为
Quantum Field Theory II - 页 3 E686e6303de6410ea603e471808b0954
假若,位势函数 Quantum Field Theory II - 页 3 4fcdc2291071d493e50668203519b860 的形式可以进一步设定为
Quantum Field Theory II - 页 3 Ba3f7027642c70ba5f815edd279f715c ;
其中,Quantum Field Theory II - 页 3 D21f1fef94d2cfa46e763df2369a6a5a 、 Quantum Field Theory II - 页 3 4dcc6bdc2d7234aa785463243010c73d 、 Quantum Field Theory II - 页 3 2104dbe4d399bebaa79082ee3d12b099 ,都是任意函数;则 HJE 是完全可分的。猜想一个完全分离解答 Quantum Field Theory II - 页 3 Fba04e20bbd8346ea412bfb352bd5346 。将这猜想公式代入 HJE ,
Quantum Field Theory II - 页 3 8c5eef73232ab06fdd09d5e5f4bd605d
公式左手边的前两个项目只跟变量 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 有关;其它的项目都跟 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 无关。所以,可以将那两个项目分离出来,成为一个常微分方程:
Quantum Field Theory II - 页 3 5f633ec04789c21714a54b85ded7ce77 ;
其中,Quantum Field Theory II - 页 3 165fd98d79eaed350d334ecc4a957395 是运动常数。
简化的HJE跟 Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 无关:
Quantum Field Theory II - 页 3 71d5e7fed485cb418e7cc19450cc3212
这公式又可以分离成两个相互独立的常微分方程:
Quantum Field Theory II - 页 3 03fc65e4b890d9c887c8eb623c4b30ab ,Quantum Field Theory II - 页 3 3b60f0bc57c39caba03d897e432eedad ;
其中,Quantum Field Theory II - 页 3 F3427c3e4395dc912b786f7ca7a53085 是运动常数。
这样,可以完全地分离HJE。
薛定谔方程[编辑]
[/ltr][/size]
Quantum Field Theory II - 页 3 200px-Hamilton_analogy_zh-hans.svg
Quantum Field Theory II - 页 3 Magnify-clip
薛定谔将哈密顿类比延伸至波动力学与波动光学之间。[1]
[size][ltr]
“哈密顿类比”是威廉·哈密顿在研究经典力学时给出的理论,又称为“光学-力学类比”;哈密顿指出,在经典力学里粒子的运动轨道,就如同在几何光学里光线的传播路径;垂直于这轨道的等作用量曲面,就如同垂直于路径的等传播时间曲面;描述粒子运动的最小作用量原理,就如同描述光线传播的费马原理。哈密顿发现,使用哈密顿-雅可比方程,可以推导出最小作用量原理与费马原理;同样的形式论,可以描述光的物理行为,不论光是由遵守费马原理的光线组成,还是由遵守最小作用量原理的粒子组成。[1]
很多光的性质,例如,衍射干涉等等,无法用几何光学的理论来作解释,必须要用到波动光学的理论来证实。。这意味着几何光学不等价于波动光学,几何光学是波动光学的波长超短于粒子轨道曲率半径的极限案例。哈密顿又研究发现,使用哈密顿-雅可比方程也可以描述波动光学里遵守惠更斯原理的光波,只要将光线的等传播时间曲面改为光波的波前。薛定谔寻思,经典力学与波动力学之间的关系,就如同几何光学与波动光学之间的关系;哈密顿-雅可比方程应该对应于波动力学的波动方程在某种极限的案例,而这极限应该也是物质波波长超短于粒子轨道曲率半径的极限(或按照对应原理,普朗克常数趋于0的极限);按照先前哈密顿类比的模式,依样画葫芦,应该可以找到正确形式的波动方程。这想法很正确,经过一番努力,他成功地推导出薛定谔方程[1][2]
粒子方程⇒波动方程[编辑]
设想一个粒子,运动于一个保守的位势 Quantum Field Theory II - 页 3 05311c8b8a2cabf34c1d12dfc6ae1025 ,它的哈密顿-雅可比方程为[2]
Quantum Field Theory II - 页 3 B3de3b264d3b186818b920c1ed2d7298 ;
其中,Quantum Field Theory II - 页 3 D5f853655f7abb30cd4511f1005e1c11 是哈密顿主函数。
由于位势与时间无关,哈密顿主函数可以分离成两部分:
Quantum Field Theory II - 页 3 6bfc1d8a903bf2c3e3ed04f225ec45c0 ;
其中,不含时的函数 Quantum Field Theory II - 页 3 080610c5bd943a05a98cf1c95162a083 是哈密顿特征函数,Quantum Field Theory II - 页 3 3a3ea00cfc35332cedf6e5e9a32e94da 是能量。
将哈密顿主函数的公式代入哈密顿-雅可比方程,稍加运算,可以得到
Quantum Field Theory II - 页 3 08d0330f72108ded46ff3da5caae168d ;
哈密顿主函数对于时间的全导数是
Quantum Field Theory II - 页 3 8ffa51eb07a167b5c6a661b22b742ae1 。
哈密顿主函数 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 的常数等值曲面 Quantum Field Theory II - 页 3 129cd1510f37e5ed1220421fbf333004 在空间移动的方程为
Quantum Field Theory II - 页 3 B6a6dabdc3d2629fe0193b61a152f574 。
所以,在设定等值曲面的正负面后,Quantum Field Theory II - 页 3 129cd1510f37e5ed1220421fbf333004 朝着法线方向移动的速度 Quantum Field Theory II - 页 3 7b774effe4a349c6dd82ad4f4f21d34c 是
Quantum Field Theory II - 页 3 F5c2dee766189e8d3a1b1be37f94b727 。
这速度 Quantum Field Theory II - 页 3 7b774effe4a349c6dd82ad4f4f21d34c 是相速度,而不是粒子的移动速度 Quantum Field Theory II - 页 3 9e3669d19b675bd57058fd4664205d2a :
Quantum Field Theory II - 页 3 84b88d05e345c846c0edec221195b4f3 。
想像 Quantum Field Theory II - 页 3 129cd1510f37e5ed1220421fbf333004 为一个相位曲面。既然粒子具有波粒二象性,试着给予粒子一个相位与 Quantum Field Theory II - 页 3 5dbc98dcc983a70728bd082d1a47546e 成比例的波函数
Quantum Field Theory II - 页 3 7a2537af509c5ffb5f095c5779b2aa71 ;
其中,Quantum Field Theory II - 页 3 C78f6d0f108bd13554e62804d0790f42 是常数,Quantum Field Theory II - 页 3 B8d3edc2b6f37988b95229d04e99e496 是跟位置有关的系数函数。
将哈密顿主函数的公式代入 Quantum Field Theory II - 页 3 E2fccb19c9755ef78ab835da8fce6b6e 波函数,
Quantum Field Theory II - 页 3 C9e0957137f50bac75babc527b74a8b2 。
注意到 Quantum Field Theory II - 页 3 9b023dbc3534d3796858472140f02939 的量纲必须是频率,薛定谔突然想到爱因斯坦的光电效应理论 Quantum Field Theory II - 页 3 Feaa2c8cf7c6a87814b0e8b0b17ed2bf ;其中,Quantum Field Theory II - 页 3 9dfd055ef1683b053f1b5bf9ed6dbbb4 是约化普朗克常数Quantum Field Theory II - 页 3 4d1b7b74aba3cfabd624e898d86b4602 是角频率。他尝试设定 Quantum Field Theory II - 页 3 C44a363defa7040d64cb6f5c8179946d ,粒子的波函数 Quantum Field Theory II - 页 3 398b8c3e58e961cdea0fe626771f3243 变为
Quantum Field Theory II - 页 3 A2b9d4b8753977f85d0166bb3d676d76 ;
其中,Quantum Field Theory II - 页 3 F769ae48cd9c3982a5555ad748a3abba 。
Quantum Field Theory II - 页 3 E2fccb19c9755ef78ab835da8fce6b6e 的波动方程
Quantum Field Theory II - 页 3 Edb41945690593a447d8a347f4c89a96 。
将 Quantum Field Theory II - 页 3 E2fccb19c9755ef78ab835da8fce6b6e 波函数代入波动方程, 经过一番运算,得到
Quantum Field Theory II - 页 3 E6695a1dc0ea5e8f2c1768e57c67e264 。
注意到 Quantum Field Theory II - 页 3 1982b014fa3634f04f259a4f082bb23b 。稍加编排,可以推导出含时薛定谔方程:
Quantum Field Theory II - 页 3 9721e46c734f55a8420342387f727aa6 。
波动方程⇒粒子方程[编辑]
逆反过来,从薛定谔方程开始:[3]:102-103
Quantum Field Theory II - 页 3 9721e46c734f55a8420342387f727aa6 。
猜想 Quantum Field Theory II - 页 3 398b8c3e58e961cdea0fe626771f3243 的形式为
Quantum Field Theory II - 页 3 476096636757449ebe269b2f6284318e 。
将 Quantum Field Theory II - 页 3 398b8c3e58e961cdea0fe626771f3243 代入薛定谔方程,稍加运算,可以得到
Quantum Field Theory II - 页 3 D8a8113efe8386baab44ce74fa7c3498 。
这薛定谔方程的经典极限(Quantum Field Theory II - 页 3 Affcf869b8a546e3859337aad4bc3d7e)与哈密顿-雅可比方程相等:
Quantum Field Theory II - 页 3 B3de3b264d3b186818b920c1ed2d7298 。
引力场[编辑]
引力场可以用哈密顿-雅可比方程表达为
Quantum Field Theory II - 页 3 D9b104a5f85eee28915339acdeb8e498 ;
其中,Quantum Field Theory II - 页 3 25b8a46f740406db9b8ff75138ab2aa8 是度规张量逆变 (contravariant) 分量,Quantum Field Theory II - 页 3 6f8f57715090da2632453988d9a1501b 是固有质量,Quantum Field Theory II - 页 3 4a8a08f09d37b73795649038408b5f33 是光速
参阅[编辑]
[/ltr][/size]
[size][ltr]
参考文献[编辑]
[/ltr][/size]

  1. 1.0 1.1 1.2 Joas, Christian; Lehner, Christoph. The classical roots of wave mechanics: Schrödinger's transformations of the optical-mechanical analogy. Studies in History and Philosophy of Modern Physics. 2009,40 (4): 338–351. ISSN 1355-2198.
  2. 2.0 2.1 薛定谔, 埃尔温, An Undulatory Theory of the Mechanics of Atoms and Molecules (PDF), Phys. Rev.. December 1926, 28 (6): 1049–1070,doi:10.1103/PhysRev.28.1049, 英文版本
  3. ^ Sakukrai, J. J.; Napolitano, Jim, Modern Quantum Mechanics. 2nd, Addison-Wesley. 2010, ISBN 978-0805382914



  1. Hamilton W. (1833) "On a General Method of Expressing the Paths of Light, and of the Planets, by the Coefficients of a Characteristic Function", Dublin University Review, pp. 795-826。
  2. Hamilton W. (1834) "On the Application to Dynamics of a General Mathematical Method previously Applied to Optics", British Association Report, pp.513-518。
  3. Eisenhart L.P., "Separable Systems of Stackel", "The Annals of Mathematics", 2nd Ser., Vol. 35, No. 2 (Apr., 1934), pp. 284-305
  4. Eisenhart L.P., "Separable Systems in Euclidean 3-Space", "Physical Review", vol. 45, Issue 6, pp. 427-428。
  5. H. Goldstein. Classical Mechanics. Addison Wesley. 2002. ISBN 0-201-65702-3.
  6. A. Fetter and J. Walecka. Theoretical Mechanics of Particles and Continua. Dover Books. 2003. ISBN 0-486-43261-0.
  7. Landau L.D., Lif***z L.M., "Mechanics", Elsevier, Amsterdam … Tokyo, 1975。


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-26, 12:19

Sturm–Liouville theory

From Wikipedia, the free encyclopedia
  (Redirected from Sturm-Liouville theory)

[ltr]In mathematics and its applications, a classical Sturm–Liouville equation, named after Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882), is a real second-order linear differential equation of the form

[/ltr]
Quantum Field Theory II - 页 3 1cf3d38302634ecf730c62982c5e6a3c
   
 
(1)
[size][ltr]

where y is a function of the free variable x. Here the functions p(x), q(x), and w(x) > 0 are specified at the outset. In the simplest of cases all coefficients are continuous on the finite closed interval [a,b], and p has continuous derivative. In this simplest of all cases, this function "y" is called a solution if it is continuously differentiable on (a,b) and satisfies the equation (1) at every point in (a,b). In addition, the unknown function y is typically required to satisfy some boundary conditions at a and b. The function w(x), which is sometimes called r(x), is called the "weight" or "density" function.
The value of λ is not specified in the equation; finding the values of λ for which there exists a non-trivial solution of (1) satisfying the boundary conditions is part of the problem called the Sturm–Liouville (S–L) problem.
Such values of λ when they exist are called the eigenvalues of the boundary value problem defined by (1) and the prescribed set of boundary conditions. The corresponding solutions (for such a λ) are the eigenfunctions of this problem. Under normal assumptions on the coefficient functions p(x), q(x), and w(x) above, they induce a Hermitiandifferential operator in some function space defined by boundary conditions. The resulting theory of the existence and asymptotic behavior of the eigenvalues, the corresponding qualitative theory of the eigenfunctions and their completeness in a suitable function space became known as Sturm–Liouville theory. This theory is important in applied mathematics, where S–L problems occur very commonly, particularly when dealing with linear partial differential equations that are separable.
A Sturm–Liouville (S–L) problem is said to be regular if p(x), w(x) > 0, and p(x), p'(x), q(x), and w(x) are continuous functions over the finite interval [ab], and have separated boundary conditions of the form

[/ltr][/size]
Quantum Field Theory II - 页 3 260895bbe02b9032a667ce60edb101dd
   
 
(2)


Quantum Field Theory II - 页 3 10259e92b5c3019525bafbb12ef45065
   
 
(3)
[size][ltr]

Under the assumption that the S–L problem is regular, the main tenet of Sturm–Liouville theory states that:
[/ltr][/size]

  • The eigenvalues λ1, λ2, λ3, ... of the regular Sturm–Liouville problem (1)-(2)-(3) are real and can be ordered such that

[size][ltr]
Quantum Field Theory II - 页 3 92c09bcc9e10ed2503e40304dfe0f043
[/ltr][/size]

  • Corresponding to each eigenvalue λn is a unique (up to a normalization constant) eigenfunction yn(x) which has exactly n − 1 zeros in (ab). The eigenfunction yn(x) is called the n-th fundamental solution satisfying the regular Sturm–Liouville problem (1)-(2)-(3).



[size][ltr]
Quantum Field Theory II - 页 3 Ea7c1a8e7326c9ccc05903d2179f1873in the Hilbert space L2([ab], w(x)dx). Here δmn is a Kronecker delta.
Note that, unless p(x) is continuously differentiable and q(x), w(x) are continuous, the equation has to be understood in a weak sense.

[/ltr][/size]
[ltr]

Contents

  [hide[/ltr]

[size][ltr]

Sturm–Liouville form[edit]

The differential equation (1) is said to be in Sturm–Liouville form or self-adjoint form. All second-order linear ordinary differential equations can be recast in the form on the left-hand side of (1) by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or ify is a vector.)

Examples[edit]

The Bessel equation[edit]

Quantum Field Theory II - 页 3 0d630d5bf3bcfa101827a7437728f593
which can be written in Sturm–Liouville form as
Quantum Field Theory II - 页 3 8b09b312a8dbe6fc5681a7a6e30e6662

The Legendre equation[edit]

Quantum Field Theory II - 页 3 B180cb4cd228a39733989ff6dbeca3b0
which can easily be put into Sturm–Liouville form, since D(1 − x2) = −2x, so, the Legendre equation is equivalent to
Quantum Field Theory II - 页 3 5bb72832f2cb7b0d629fe01a5fcd9145

An example using an integrating factor[edit]

Quantum Field Theory II - 页 3 2890c3187aac8299853130e171e17c35
Divide throughout by x3:
Quantum Field Theory II - 页 3 84a146d9f9d3e6d1258ee15aca9c45dd
Multiplying throughout by an integrating factor of
Quantum Field Theory II - 页 3 5433db0538f6873ffd2359804181812e
gives
Quantum Field Theory II - 页 3 0fe5064039d01f27f3db08464d01c4db
which can be easily put into Sturm–Liouville form since
Quantum Field Theory II - 页 3 F1c22b95eff04534d236891f37b48442
so the differential equation is equivalent to
Quantum Field Theory II - 页 3 204e1a8c529214189d90329c33056ebd

The integrating factor for a general second order differential equation[edit]

Quantum Field Theory II - 页 3 A23826719711ffa34aa99c1eed9012a3
multiplying through by the integrating factor
Quantum Field Theory II - 页 3 8a656d522afc6cda9e22e3a3a4ad6d49
and then collecting gives the Sturm–Liouville form:
Quantum Field Theory II - 页 3 Ecbf35a4f802deb5fae90d219aed8c58
or, explicitly,
Quantum Field Theory II - 页 3 556408c799d8e64c8b47c2cbff540cbe

Sturm–Liouville equations as self-adjoint differential operators[edit]

The map
Quantum Field Theory II - 页 3 A13da7d99ea23eb58dc78ab09afd688c
can be viewed as a linear operator mapping a function u to another function Lu. One may study this linear operator in the context of functional analysis. In fact, equation (1) can be written as
Quantum Field Theory II - 页 3 7455108d07004b024d6f1c23ca1ecbf1
This is precisely the eigenvalue problem; that is, one is trying to find the eigenvalues λ1, λ2, λ3, ... and the corresponding eigenvectors u1u2u3, ... of the L operator. The proper setting for this problem is the Hilbert space L2([a, b], w(x) dx) with scalar product
Quantum Field Theory II - 页 3 F069bf9a1ad39a561011a56fc44dce3e
In this space L is defined on sufficiently smooth functions which satisfy the above boundary conditions. Moreover, L gives rise to a self-adjoint operator. This can be seen formally by using integration by parts twice, where the boundary terms vanish by virtue of the boundary conditions. It then follows that the eigenvalues of a Sturm–Liouville operator are real and that eigenfunctions of L corresponding to different eigenvalues are orthogonal. However, this operator is unbounded and hence existence of an orthonormal basis of eigenfunctions is not evident. To overcome this problem, one looks at the resolvent
Quantum Field Theory II - 页 3 D4fc088c5983b25892e1bceb469d9aa3
where z is chosen to be some real number which is not an eigenvalue. Then, computing the resolvent amounts to solving the inhomogeneous equation, which can be done using the variation of parameters formula. This shows that the resolvent is an integral operator with a continuous symmetric kernel (the Green's function of the problem). As a consequence of the Arzelà–Ascoli theorem, this integral operator is compact and existence of a sequence of eigenvalues αn which converge to 0 and eigenfunctions which form an orthonormal basis follows from the spectral theorem for compact operators. Finally, note that
Quantum Field Theory II - 页 3 06287c740326632455b3e5bf9088e949
are equivalent.
If the interval is unbounded, or if the coefficients have singularities at the boundary points, one calls L singular. In this case, the spectrum no longer consists of eigenvalues alone and can contain a continuous component. There is still an associated eigenfunction expansion (similar to Fourier series versus Fourier transform). This is important in quantum mechanics, since the one-dimensional time-independent Schrödinger equation is a special case of a S–L equation.

Example[edit]

We wish to find a function u(x) which solves the following Sturm–Liouville problem:

[/ltr][/size]
Quantum Field Theory II - 页 3 84a7d81b526f7f810f2867964e23ba65
   
 
(4)
[size][ltr]

where the unknowns are λ and u(x). As above, we must add boundary conditions, we take for example
Quantum Field Theory II - 页 3 E299a3b09af6f6e418e382f0f6bcec79
Observe that if k is any integer, then the function
Quantum Field Theory II - 页 3 Cc6c065855ca201e1306a581343d6805
is a solution with eigenvalue λ = k2. We know that the solutions of a S–L problem form an orthogonal basis, and we know from Fourier series that this set of sinusoidal functions is an orthogonal basis. Since orthogonal bases are always maximal (by definition) we conclude that the S–L problem in this case has no other eigenvectors.
Given the preceding, let us now solve the inhomogeneous problem
Quantum Field Theory II - 页 3 Fd34db761810e5aeb4ed08f3643c990e
with the same boundary conditions. In this case, we must write f(x) = x in a Fourier series. The reader may check, either by integrating ∫exp(ikx)x dx or by consulting a table of Fourier transforms, that we thus obtain
Quantum Field Theory II - 页 3 66a3b25b2137da458bbc495270bf9e09
This particular Fourier series is troublesome because of its poor convergence properties. It is not clear a priori whether the series converges pointwise. Because of Fourier analysis, since the Fourier coefficients are "square-summable", the Fourier series converges in L2 which is all we need for this particular theory to function. We mention for the interested reader that in this case we may rely on a result which says that Fourier's series converges at every point of differentiability, and at jump points (the function x, considered as a periodic function, has a jump at π) converges to the average of the left and right limits (see convergence of Fourier series).
Therefore, by using formula (4), we obtain that the solution is
Quantum Field Theory II - 页 3 74fbdf10a54454eeedf1bfff92ad6219
In this case, we could have found the answer using anti-differentiation. This technique yields
Quantum Field Theory II - 页 3 0a03bf47ff57c71280c6fc581a5611c6
whose Fourier series agrees with the solution we found. The anti-differentiation technique is no longer useful in most cases when the differential equation is in many variables.

Application to normal modes[edit]

Certain partial differential equations can be solved with the help of S–L theory. Suppose we are interested in the modes of vibration of a thin membrane, held in a rectangular frame, 0 ≤ x ≤ L1, 0 ≤ y ≤ L2. The equation of motion for the vertical membrane's displacement, W(xyt) is given by the wave equation:
Quantum Field Theory II - 页 3 Cb94f01435fb99c38d3af7b27715a208
The method of separation of variables suggests looking first for solutions of the simple form W = X(x) × Y(y) × T(t). For such a function W the partial differential equation becomesX"/X + Y"/Y = (1/c2)T"/T. Since the three terms of this equation are functions of x,y,t separately, they must be constants. For example, the first term gives X" = λX for a constant λ. The boundary conditions ("held in a rectangular frame") are W = 0 when x = 0, L1 or y = 0, L2 and define the simplest possible S–L eigenvalue problems as in the example, yielding the "normal mode solutions" for W with harmonic time dependence,
Quantum Field Theory II - 页 3 8314e4ed1769df8caf9e54b455a8c0d6
where m and n are non-zero integersAmn are arbitrary constants, and
Quantum Field Theory II - 页 3 E91df47b9591c2a53b57cc6e7cbb5eee
The functions Wmn form a basis for the Hilbert space of (generalized) solutions of the wave equation; that is, an arbitrary solution W can be decomposed into a sum of these modes, which vibrate at their individual frequencies Quantum Field Theory II - 页 3 777aa13c32a87e7ff92c146180b71fe9. This representation may require a convergent infinite sum.

Representation of solutions and numerical calculation[edit]

The Sturm–Liouville differential equation (1) with boundary conditions may be solved in practice by a variety of numerical methods. In difficult cases, one may need to carry out the intermediate calculations to several hundred decimal places of accuracy in order to obtain the eigenvalues correctly to a few decimal places.
1. Shooting methods.[1][2] These methods proceed by guessing a value of λ, solving an initial value problem defined by the boundary conditions at one endpoint, say, a, of the interval [ab], comparing the value this solution takes at the other endpoint b with the other desired boundary condition, and finally increasing or decreasing λ as necessary to correct the original value. This strategy is not applicable for locating complex eigenvalues.
2. Finite difference method.
3. The Spectral Parameter Power Series (SPPS) method[3] makes use of a generalization of the following fact about second order ordinary differential equations: if y is a solution which does not vanish at any point of [a,b], then the function
Quantum Field Theory II - 页 3 C71e1e70664acb2dfc92165745e58cf5
is a solution of the same equation and is linearly independent from y. Further, all solutions are linear combinations of these two solutions. In the SPPS algorithm, one must begin with an arbitrary value λ0* (often λ0* = 0; it does not need to be an eigenvalue) and any solution y0 of (1) with λ = λ0* which does not vanish on [ab]. (Discussion below of ways to find appropriate y0 and λ0*.) Two sequences of functions X(n)(t), X~(n)(t) on [ab], referred to as iterated integrals, are defined recursively as follows. First when n = 0, they are taken to be identically equal to 1 on [ab]. To obtain the next functions they are multiplied alternately by 1/(py02) and wy02 and integrated, specifically

[/ltr][/size]
Quantum Field Theory II - 页 3 2a40d9695c4685a579c122fc8b1128d1
   
 
(5)


Quantum Field Theory II - 页 3 E5c27600804bbb6bb7525a8f877909e8
   
 
(6)
[size][ltr]

when n > 0. The resulting iterated integrals are now applied as coefficients in the following two power series in λ:
Quantum Field Theory II - 页 3 9114c170e23175ef1bc5dde90f647cdbQuantum Field Theory II - 页 3 84f94a703b05ccc859b14e82e038859e
Then for any λ (real or complex), u0 and u1 are linearly independent solutions of the corresponding equation (1). (The functions p(x) and q(x) take part in this construction through their influence on the choice of y0.)
Next one chooses coefficients c0c1 so that the combination y = c0u0 + c1u1 satisfies the first boundary condition (2). This is simple to do since X(n)(a) = 0 and X~(n)(a) = 0, for n > 0. The values of X(n)(b) and X~(n)(b) provide the values of u0(b) and u1(b) and the derivatives u0'(b) and u1'(b), so the second boundary condition (3) becomes an equation in a power series in λ. For numerical work one may truncate this series to a finite number of terms, producing a calculable polynomial in λ whose roots are approximations of the sought-after eigenvalues.
When λ = λ0, this reduces to the original construction described above for a solution linearly independent to a given one. The representations (5),(6) also have theoretical applications in Sturm–Liouville theory.[3]

Construction of a nonvanishing solution[edit]

The SPPS method can, itself, be used to find a starting solution y0. Consider the equation (py')' = μqy; i.e., qw, and λ are replaced in (1) by 0, −q, and μ respectively. Then the constant function 1 is a nonvanishing solution corresponding to the eigenvalue μ0 = 0. While there is no guarantee that u0 or u1 will not vanish, the complex function y0 = u0 + iu1will never vanish because two linearly independent solutions of a regular S–L equation cannot vanish simultaneously as a consequence of the Sturm separation theorem. This trick gives a solution y0 of (1) for the value λ0 = 0. In practice if (1) has real coefficients, the solutions based on y0 will have very small imaginary parts which must be discarded.

Application to PDEs[edit]

For a linear second order in one spatial dimension and first order in time of the form:
Quantum Field Theory II - 页 3 5c63634d2f1c0283e421f917f17839f4Quantum Field Theory II - 页 3 88787c519da9082ea6dcf7cd92c8d171Quantum Field Theory II - 页 3 0003d8874745132b9744a14bc4901d16
Let us apply separation of variables, which in doing we must impose that:
Quantum Field Theory II - 页 3 F0b8078cf325db4f43496af088a03dff
Then our above PDE may be written as:
Quantum Field Theory II - 页 3 53166d513b8acc1ad9137837db90c914
Where
Quantum Field Theory II - 页 3 53cd9169fcdbfa44318903323eb58568
Since, by definition, Quantum Field Theory II - 页 3 9fe5d73157beda625548e9cd558d5236 and Quantum Field Theory II - 页 3 3fef82997b24469cffdaec636e5dfeb4 are independent of time t and Quantum Field Theory II - 页 3 B93ed66394d0f410426655cf87c615ac and Quantum Field Theory II - 页 3 29960eaebe5e76d86b2b87502661f0af are independent of position x, then both sides of the above equation must be equal to a constant:
Quantum Field Theory II - 页 3 E0c593b2c69c46927a5e40275283ccb9Quantum Field Theory II - 页 3 687b82c5b5e6b9b092ebdb87eb647d25Quantum Field Theory II - 页 3 E3e0065b1ae280279b5287f655fc6e36
The first of these equations must be solved as a Sturm–Liouville problem. Since there is no general analytic (exact) solution to Sturm–Liouville problems, we can assume we already have the solution to this problem, that is, we have the eigenfunctions Quantum Field Theory II - 页 3 016cf1d6c30eabe5cee95eaa40d476ea and eigenvalues Quantum Field Theory II - 页 3 034386f1cf69dedb757485fc4ebef51e. The second of these equations can be analytically solved once the eigenvalues are known.
Quantum Field Theory II - 页 3 C5179f2acc07be99a5592e20c7be47d8Quantum Field Theory II - 页 3 3bd6e8ec41070421d50a26ad0140be4eQuantum Field Theory II - 页 3 6d57783923dc708f3b7424308c5ee29dQuantum Field Theory II - 页 3 07b26c0a56b620341180cc34ad1ce224
Where:
Quantum Field Theory II - 页 3 Acafc846aac7bcefac4c266b2128e857Quantum Field Theory II - 页 3 E782ddcd89e79660b3da9e602f6e48c7

See also[edit]

[/ltr][/size]
[size][ltr]

References[edit]

[/ltr][/size][list=references]
[*]Jump up^ J. D. Pryce, Numerical Solution of Sturm–Liouville Problems, Clarendon Press, Oxford, 1993.
[*]Jump up^ V. Ledoux, M. Van Daele, G. Vanden Berghe, "Efficient computation of high index Sturm–Liouville eigenvalues for problems in physics," Comput. Phys. Comm. 180, 2009, 532–554.
[*]^ Jump up to:a b V. V. Kravchenko, R. M. Porter, "Spectral parameter power series for Sturm–Liouville problems," Mathematical Methods in the Applied Sciences (MMAS) 33, 2010, 459–468
[/list]
[size][ltr]

Further reading[edit]

[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-26, 12:20

[ltr]切触几何[编辑]



数学上,切触几何是研究流形上的完全不可积超平面的几何。根据弗洛比尼斯定理,这个(大致来讲)可以通过叶状结构的不成立来识别。作为它的姐妹,辛几何属于偶数维的世界,而切触几何是奇数维的对应几何。
[/ltr]

[ltr]

目录

  [隐藏[/ltr]



[ltr]


应用[编辑]

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学经典力学热力学几何量子化、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。 切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

切触形式和结构[编辑]

一个切触形式 α在2n+1维流形M上就是一个(局部)1-流形,具有属性
Quantum Field Theory II - 页 3 33c929f6f4e81c627f7b9039351fb7f2
一个切触结构 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。
从定义可以导出dα限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。
作为基本例子,考虑R3,使用一下坐标
(x, y, z),
1-形式
dz -ydx.
在一点的切除平面ξ
(x,y,z)
由下列向量张成
X1 = ∂y

X2 = ∂x+y∂z.
(画一幅图像!)。实际上很容易将这个例子推广到任意R2n+1。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。
任何n-维流形M余切丛 T* M本身是一个流形(维数为2n),并且自然地支持一个恰当辛结构ω = dλ。(这个1-形式λ有时称为刘维尔形式)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场 A (唯一地)由λ(A)=1和dλ定义,(A, B)=0对于所有该度量的测地流生成的向量场B成立。
另一方面,可以通过考虑 T*M× R来构造一个切触流形。采用坐标(x,t),这个流形有一个切触结构
α=dt+λ.
最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和R的直积: 若α是一个切触形式,在流形M上,则
ω=d(etα)
是一个M×R上的辛流形,其中t表示在R-方向的变量。

勒让德子流形和纽结[编辑]

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。 勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。
勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

Reeb向量场[编辑]

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论嵌入切触同调这类的Floer同调来研究流形本身。

历史回顾[编辑]

切触几何的根源出现于克里斯蒂安·惠更斯Barrow牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的'空间元素的变换'。

参考[编辑]

切触几何入门:[/ltr]


  • Etnyre, J. Introductory lectures on contact geometry, Proc. Sympos. Pure Math. 71 (2003), 81-107.arXiv
  • Geiges, H. Contact GeometryarXiv
  • Aebischer et.al. symplectic geometry, Birkhäuser, 1994.


[ltr]

切除三维流形和勒让德纽结:[/ltr]


  • William Thurston, Three-Dimensional Geometry and Topology. Princeton University Press, 1997.


[ltr]

切触几何的历史信息:[/ltr]


  • Lutz, R. Quelques remarques historiques et prospectives sur la géométrie de contact , Conf. on Diff.Geom. and Top. (Sardinia, 1988) Rend. Fac. Sci. Univ. Cagliari 58 (1988), suppl., 361-393.
  • Geiges, H. A Brief History of Contact Geometry and Topology, Expo. Math. 19 (2001), 25-53.
  • Arnold, V.I. (trans. E. Primrose), Huygens and Barrow, Newton and Hooke: pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals. Birkhauser Verlag, 1990.



Contact geometry

From Wikipedia, the free encyclopedia


[ltr]Contact form redirects here. For a web email form, see Form_(web)#Form-to-email_scripts.
[/ltr]
Quantum Field Theory II - 页 3 220px-Standard_contact_structure.svg
Quantum Field Theory II - 页 3 Magnify-clip
The standard contact structure onR3. Each point in R3 has a plane associated to it by the contact structure, in this case as the kernel of the one-form dz − y dx. These planes appear to twist along the y-axis.
[size][ltr]
In mathematicscontact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in thetangent bundle and specified by a one-form, both of which satisfy a 'maximum non-degeneracy' condition called 'complete non-integrability'. From the Frobenius theorem, one recognizes the condition as the opposite of the condition that the distribution be determined by a codimension one foliation on the manifold ('complete integrability').
Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, which belongs to the even-dimensional world. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical system or the odd-dimensional extended phase space that includes the time variable.

[/ltr][/size]
[ltr]

Contents

  [hide[/ltr]

[size][ltr]

Applications[edit]

Contact geometry has — as does symplectic geometry — broad applications in physics, e.g. geometrical opticsclassical mechanicsthermodynamicsgeometric quantization, and applied mathematics such as control theory. Contact geometry also has applications to low-dimensional topology; for example, it has been used by Kronheimer and Mrowka to prove the property P conjecture and by Yakov Eliashberg to derive a topological characterization of Stein manifolds.

Contact forms and structures[edit]

Given an n-dimensional smooth manifold M, and a point p ∈ M, a contact element of M with contact point p is an (n − 1)-dimensional linear subspace of the tangent space toM at p.[1][2] A contact element can be given by the zeros of a 1-form on the tangent space to M at p. However, if a contact element is given by the zeros of a 1-form ω, then it will also be given by the zeros of λω where λ ≠ 0. Thus, { λω : λ ≠ 0 } all give the same contact element. It follows that the space of all contact elements of M can be identified with a quotient of the cotangent bundle T*M,[1] namely:
Quantum Field Theory II - 页 3 8d510654a939e2cf50e68cea2421741d
contact structure on an odd dimensional manifold M, of dimension 2k+1, is a smooth distribution of contact elements, denoted by ξ, which is generic at each point.[1][2] The genericity condition is that ξ is non-integrable.
Assume that we have a smooth distribution of contact elements, ξ, given locally by a differential 1-form α; i.e. a smooth section of the cotangent bundle. The non-integrability condition can be given explicitly as:[1]
Quantum Field Theory II - 页 3 D28ff0059a056e318bd0d46c68e861b0
Notice that if ξ is given by the differential 1-form α, then the same distribution is given locally by β = ƒ⋅α, where ƒ is a non-zero smooth function. If ξ is co-orientable then α is defined globally.

Properties[edit]

It follows from the Frobenius theorem on integrability that the contact field ξ is completely nonintegrable. This property of the contact field is roughly the opposite of being a field formed by the tangent planes to a family of nonoverlapping hypersu***ces in M. In particular, you cannot find a piece of a hypersu***ce tangent to ξ on an open set of M. More precisely, a maximally integrable subbundle has dimension n.

Relation with symplectic structures[edit]

A consequence of the definition is that the restriction of the 2-form ω = dα to a hyperplane in ξ is a nondegenerate 2-form. This construction provides any contact manifold M with a natural symplectic bundle of rank one smaller than the dimension of M. Note that a symplectic vector space is always even-dimensional, while contact manifolds need to be odd-dimensional.
The cotangent bundle T*N of any n-dimensional manifold N is itself a manifold (of dimension 2n) and supports naturally an exact symplectic structure ω = dλ. (This 1-form λ is sometimes called the Liouville form). There are several ways to construct an associated contact manifold, one of dimension 2n − 1, one of dimension 2n + 1.
Projectivization
Let M be the projectivization of the cotangent bundle of N: thus M is fiber bundle over a M whose fiber at a point x is the space of lines in T*N, or, equivalently, the space of hyperplanes in TN. The 1-form λ does not descend to a genuine 1-form on M. However, it is homogeneous of degree 1, and so it defines a 1-form with values in the line bundle O(1), which is the dual of the fibrewise tautological line bundle of M. The kernel of this 1-form defines a contact distribution.
Energy su***ces
Suppose that H is a smooth function on T*N, that E is a regular value for H, so that the level set Quantum Field Theory II - 页 3 7d330a89b55a446fbed83b886884e06a is a smooth submanifold of codimension 1. A vector field Y is called an Euler (or Liouville) vector field if it is transverse to L and conformally symplectic, meaning that the Lie derivative of dλ with respect to Yis a multiple of dλ in a neighborhood of L.
Then the restriction of Quantum Field Theory II - 页 3 408e478cd67f528bc15a36fe87c71559 to L is a contact form on L.
This construction originates in Hamiltonian mechanics, where H is a Hamiltonian of a mechanical system with the configuration space N and the phase space T*N, and E is the value of the energy.
The unit cotangent bundle
Choose a Riemannian metric on the manifold N and let H be the associated kinetic energy. Then the level set H =1/2 is the unit cotangent bundle of N, a smooth manifold of dimension 2n-1 fibering over N with fibers being spheres. Then the Liouville form restricted to the unit cotangent bundle is a contact structure. This corresponds to a special case of the second construction, where the flow of the Euler vector field Y corresponds to linear scaling of momenta p's, leaving the q's fixed. The vector field R, defined by the equalities
λ(R) = 1 and dλ(RA) = 0 for all vector fields A,
is called the Reeb vector field, and it generates the geodesic flow of the Riemannian metric. More precisely, using the Riemannian metric, one can identify each point of the cotangent bundle of N with a point of the tangent bundle of N, and then the value of R at that point of the (unit) cotangent bundle is the corresponding (unit) vector parallel to N.
First jet bundle
On the other hand, one can build a contact manifold M of dimension 2n + 1 by considering the first jet bundle of the real valued functions on N. This bundle is isomorphic to T*N×Rusing the exterior derivative of a function. With coordinates (xt), M has a contact structure
[/ltr][/size][list="line-height: 1.6; margin-top: 0.3em; margin-right: 0px; margin-bottom: 0px; margin-left: 3.2em; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; list-style-image: none;"]
[*]α = dt + λ.
[/list]
[size][ltr]
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then
ω = d(etα)
is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the contact manifold M.

Examples[edit]

As a prime example, consider R3, endowed with coordinates (x,y,z) and the one-form dz − y dx. The contact plane ξ at a point (x,y,z) is spanned by the vectors X1 = ∂y andX2 = ∂x + y ∂z.
By replacing the single variables x and y with the multivariables x1, ..., xny1, ..., yn, one can generalize this example to any R2n+1. By a theorem of Darboux, every contact structure on a manifold looks locally like this particular contact structure on the (2n + 1)-dimensional vector space.
An important class of contact manifolds is formed by Sasakian manifolds.

Legendrian submanifolds and knots[edit]

The most interesting subspaces of a contact manifold are its Legendrian submanifolds. The non-integrability of the contact hyperplane field on a (2n + 1)-dimensional manifold means that no 2n-dimensional submanifold has it as its tangent bundle, even locally. However, it is in general possible to find n-dimensional (embedded or immersed) submanifolds whose tangent spaces lie inside the contact field. Legendrian submanifolds are analogous to Lagrangian submanifolds of symplectic manifolds. There is a precise relation: the lift of a Legendrian submanifold in a symplectization of a contact manifold is a Lagrangian submanifold. The simplest example of Legendrian submanifolds are Legendrian knots inside a contact three-manifold. Inequivalent Legendrian knots may be equivalent as smooth knots.
Legendrian submanifolds are very rigid objects; typically there are infinitely many Legendrian isotopy classes of embeddings which are all smoothly isotopic. Symplectic field theoryprovides invariants of Legendrian submanifolds called relative contact homology that can sometimes distinguish distinct Legendrian submanifolds that are topologically identical.

Reeb vector field[edit]

If α is a contact form for a given contact structure, the Reeb vector field R can be defined as the unique element of the kernel of dα such that α(R) = 1. Its dynamics can be used to study the structure of the contact manifold or even the underlying manifold using techniques of Floer homology such as symplectic field theory and embedded contact homology.

Some historical remarks[edit]

The roots of contact geometry appear in work of Christiaan HuygensIsaac Barrow and Isaac Newton. The theory of contact transformations (i.e. transformations preserving a contact structure) was developed by Sophus Lie, with the dual aims of studying differential equations (e.g. the Legendre transformation or canonical transformation) and describing the 'change of space element', familiar from projective duality.

See also[edit]

[/ltr][/size]
[size][ltr]

References[edit]

[/ltr][/size][list=references]
[*]^ Jump up to:a b c d Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Springer, pp. 349 − 370, ISBN 0-387-96890-3
[*]^ Jump up to:a b Arnold, V. I. (1989). "Contact Geometry and Wave Propagation"Monographie de L'Enseignement Mathématique. Conférences de l'Union Mathématique Internationale (in English) (Univ. de Genève).
[/list]
[size][ltr]

Introductions to contact geometry[edit]

[/ltr][/size]
[size][ltr]

Applications to differential equations[edit]

[/ltr][/size]

  • V. I. Arnold, Geometrical Methods In The Theory Of Ordinary Differential Equations, Springer-Verlag (1988), ISBN 0-387-96649-8

[size][ltr]

Contact three-manifolds and Legendrian knots[edit]

[/ltr][/size]

  • William Thurston, Three-Dimensional Geometry and Topology. Princeton University Press(1997), ISBN 0-691-08304-5

[size][ltr]

Information on the history of contact geometry[edit]

[/ltr][/size]

  • Lutz, R. Quelques remarques historiques et prospectives sur la géométrie de contact , Conf. on Diff. Geom. and Top. (Sardinia, 1988) Rend. Fac. Sci. Univ. Cagliari 58 (1988), suppl., 361–393.
  • Geiges, H. A Brief History of Contact Geometry and Topology, Expo. Math. 19 (2001), 25–53.
  • Arnold, V.I. (trans. E. Primrose), Huygens and Barrow, Newton and Hooke: pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals. Birkhauser Verlag, 1990.
  • Contact geometry Theme on arxiv.org

[size][ltr]

External links[edit]

[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-30, 01:07

Inner product space

From Wikipedia, the free encyclopedia


[ltr]For the scalar product or dot product of coordinate vectors, see dot product.
See also: Parallelogram law and Polarization identity
[/ltr]
Quantum Field Theory II - 页 3 300px-Inner-product-angle

Geometric interpretation of the angle between two vectors defined using an inner product
[size][ltr]
In linear algebra, an inner product space is a vector space with an additional structure called an inner product. This additional structure associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors. Inner products allow the rigorous introduction of intuitive geometrical notions such as the length of a vector or theangle between two vectors. They also provide the means of defining orthogonality between vectors (zero inner product). Inner product spaces generalize Euclidean spaces (in which the inner product is the dot product, also known as the scalar product) to vector spaces of any (possibly infinite) dimension, and are studied in functional analysis.
An inner product naturally induces an associated norm, thus an inner product space is also a normed vector space. Acomplete space with an inner product is called a Hilbert space. An incomplete space with an inner product is called a pre-Hilbert space, since its completion with respect to the norm induced by the inner product becomes a Hilbert space. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

[/ltr][/size]
[ltr]

Contents

  [hide[/ltr]


[size][ltr]

Definition[edit]

In this article, the field of scalars denoted F is either the field of real numbers R or the field of complex numbers C.
Formally, an inner product space is a vector space V over the field F together with an inner product, i.e., with a map
Quantum Field Theory II - 页 3 381bd489c7aed252b9b9a303481f381e
that satisfies the following three axioms for all vectors Quantum Field Theory II - 页 3 648831fbbd23076324c5692b497fa0c5 and all scalars Quantum Field Theory II - 页 3 5dbf3a12e00c2b1ca7b503397b28dab4:[1][2]
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 Af37f21f75f54655026d356b9c5a5de6Note that when F = R, conjugate symmetry reduces to symmetry. That is, Quantum Field Theory II - 页 3 1b02bd74dc3640b30879b887e20a6eee for F = R; while for F = CQuantum Field Theory II - 页 3 Fdca0bfccc74afcea2729558a4dd8a96 is equal to the complex conjugate[Note 1] of the number Quantum Field Theory II - 页 3 E02d4cacc53223f8fc6941a4d17d1d81.
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 Bc9690c28f3bab1366b3e0dec1cc6a4eQuantum Field Theory II - 页 3 7ef377fa39b3a7f7c89da67f841d5b59Together with conjugate symmetry, this implies conjugate linearity in the second argument (below).
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 9ee76c4938a5e3b729415ca021ccb917Quantum Field Theory II - 页 3 Ec0ac02e8078f1c1798d493270bc5f0e

Alternative definitions, notations and remarks[edit]

Some authors, especially in physics and matrix algebra, prefer to define the inner product and the sesquilinear form with linearity in the second argument rather than the first. Then the first argument becomes conjugate linear, rather than the second. In those disciplines we would write the product Quantum Field Theory II - 页 3 Fdca0bfccc74afcea2729558a4dd8a96 as Quantum Field Theory II - 页 3 88fe3b4c79eeda131ab9f35a0464f83b (the bra–ket notation of quantum mechanics), respectively Quantum Field Theory II - 页 3 A108086945c470e6b4e9646b63b06614 (dot product as a case of the convention of forming the matrix product AB as the dot products of rows of A with columns of B). Here the kets and columns are identified with the vectors of V and the bras and rows with the dual vectors or linear functionals of the dual space V, with conjugacy associated with duality. This reverse order is now occasionally followed in the more abstract literature,[3] taking Quantum Field Theory II - 页 3 Fdca0bfccc74afcea2729558a4dd8a96 to be conjugate linear in x rather than y. A few instead find a middle ground by recognizing both Quantum Field Theory II - 页 3 E02eaeb6eb365f078ca029f67f7a6973 and Quantum Field Theory II - 页 3 6f5b0f39ab1f308f9a500bdece50367e as distinct notations differing only in which argument is conjugate linear.
There are various technical reasons why it is necessary to restrict the basefield to R and C in the definition. Briefly, the basefield has to contain an ordered subfield[citation needed](in order for non-negativity to make sense) and therefore has to have characteristic equal to 0 (since any ordered field has to have such characteristic). This immediately excludes finite fields. The basefield has to have additional structure, such as a distinguished automorphism. More generally any quadratically closed subfield of R or C will suffice for this purpose, e.g., the algebraic numbers, but when it is a proper subfield (i.e., neither R nor C) even finite-dimensional inner product spaces will fail to be metrically complete. In contrast all finite-dimensional inner product spaces over R or C, such as those used in quantum computation, are automatically metrically complete and hence Hilbert spaces.
In some cases we need to consider non-negative semi-definite sesquilinear forms. This means that Quantum Field Theory II - 页 3 Baf04680ba3a5a354ffca8b6b6901aca is only required to be non-negative. We show how to treat these below.

Elementary properties[edit]

Notice that conjugate symmetry implies that Quantum Field Theory II - 页 3 Baf04680ba3a5a354ffca8b6b6901aca is real for all x, since we have:
Quantum Field Theory II - 页 3 3475edded6edd9bd63c69458b0038009
Moreover, sesquilinearity (see below) implies that
Quantum Field Theory II - 页 3 140bff2a34764514473beb0e8525a16f
Conjugate symmetry and linearity in the first variable gives
Quantum Field Theory II - 页 3 8eadbed5fc5f94e76db00e28db8220dbQuantum Field Theory II - 页 3 Ee9c9e299ef71af6907f6dcceeaf2a4e
so an inner product is a sesquilinear form. Conjugate symmetry is also called Hermitian symmetry, and a conjugate symmetric sesquilinear form is called a Hermitian form. While the above axioms are more mathematically economical, a compact verbal definition of an inner product is a positive-definite Hermitian form.
In the case of F = R, conjugate-symmetry reduces to symmetry, and sesquilinear reduces to bilinear. So, an inner product on a real vector space is a positive-definite symmetric bilinear form.
From the linearity property it is derived that x = 0 implies Quantum Field Theory II - 页 3 4caaae2caeec72a131b1fada7bb482b2 while from the positive-definiteness axiom we obtain the converse, Quantum Field Theory II - 页 3 Da6541f64e1ff2cea3834153bc252a1b implies x = 0. Combining these two, we have the property that Quantum Field Theory II - 页 3 Da6541f64e1ff2cea3834153bc252a1b if and only if x = 0.
Combining the linearity of the inner product in its first argument and the conjugate symmetry gives the following important generalization of the familiar square expansion:
Quantum Field Theory II - 页 3 82968fddbfdf2616c548fb17d6c2e04d
Assuming the underlying field to be R, the inner product becomes symmetric, and we obtain
Quantum Field Theory II - 页 3 5512537fb5454910caf51078ad1c9747
The property of an inner product space V that
Quantum Field Theory II - 页 3 2471cf6e73b6600d9a0e647014d6ad83Quantum Field Theory II - 页 3 Fdfecfb90ece34f7d44974867f0b07c5
is also known as additivity.

Examples[edit]

[/ltr][/size]

  • A simple example is the real numbers with the standard multiplication as the inner product

[size][ltr]
Quantum Field Theory II - 页 3 D427b136c84a3eec7b422d2846c22997More generally, the real n-space Rn with the dot product is an inner product space, an example of a Euclidean n-space.Quantum Field Theory II - 页 3 2085a5d44b83df8e6c71279c5c7b9486where xT is the transpose of x.
[/ltr][/size]

  • The general form of an inner product on Cn is known as the Hermitian form and is given by

[size][ltr]
Quantum Field Theory II - 页 3 0eb214ae5dd551079e49191be1d75d9cwhere M is any Hermitian positive-definite matrix and y is the conjugate transpose of y. For the real case this corresponds to the dot product of the results of directionally different scaling of the two vectors, with positive scale factors and orthogonal directions of scaling. Up to an orthogonal transformation it is a weighted-sum version of the dot product, with positive weights.
[/ltr][/size]

  • The article on Hilbert space has several examples of inner product spaces wherein the metric induced by the inner product yields a complete metric space. An example of an inner product which induces an incomplete metric occurs with the space C([ab]) of continuous complex valued functions on the interval [ab]. The inner product is

[size][ltr]
Quantum Field Theory II - 页 3 96d799f1d70d0a1b90b0d750d842c1e6This space is not complete; consider for example, for the interval [−1,1] the sequence of continuous "step" functions, {fk}k, defined by:Quantum Field Theory II - 页 3 7c7578512e3fb869fdc9dc02fb8a4f59This sequence is a Cauchy sequence for the norm induced by the preceding inner product, which does not converge to a continuous function.
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 656a7660387b2bb0da4401f90b2684dcis an inner product. In this case, <XX> = 0 if and only if Pr(X = 0) = 1 (i.e., X = 0 almost surely). This definition of expectation as inner product can be extended to random vectors as well.
[/ltr][/size]

  • For square real matrices, Quantum Field Theory II - 页 3 9a66be84e3e0848ec874d709e9f0876e with transpose as conjugation

[size][ltr]
Quantum Field Theory II - 页 3 54d1b180baba7e01ceb7c1243669f2c2is an inner product.

Norms on inner product spaces[edit]

A linear space with a norm such as:
Quantum Field Theory II - 页 3 Ed4f2c5d7e059b63b1d5ef7e7ff03eec
is a normed space but not an inner product space, because this norm does not satisfy the parallelogram equality required of a norm to have an inner product associated with it.[4][5]
However, inner product spaces have a naturally defined norm based upon the inner product of the space itself that does satisfy the parallelogram equality:
Quantum Field Theory II - 页 3 5c492fa4025e46d16a674c8eaa597c0d
This is well defined by the nonnegativity axiom of the definition of inner product space. The norm is thought of as the length of the vector x. Directly from the axioms, we can prove the following:
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 Efd545db5bd64faa4274722c9bb88f59with equality if and only if x and y are linearly dependent. This is one of the most important inequalities in mathematics. It is also known in the Russian mathematical literature as the Cauchy–Bunyakovsky–Schwarz inequality.
[/ltr][/size]

  • Orthogonality: The geometric interpretation of the inner product in terms of angle and length, motivates much of the geometric terminology we use in regard to these spaces. Indeed, an immediate consequence of the Cauchy–Schwarz inequality is that it justifies defining the angle between two non-zero vectors x and y in the case F = R by the identity

[size][ltr]
Quantum Field Theory II - 页 3 891f5665ee88157f3f54f28fe8633b24We assume the value of the angle is chosen to be in the interval [0, π]. This is in analogy to the situation in two-dimensional Euclidean space.In the case F = C, the angle in the interval [0, π/2] is typically defined byQuantum Field Theory II - 页 3 Fd9e06c03f0c4be655a98859d4e97a80Correspondingly, we will say that non-zero vectors x and y of V are orthogonal if and only if their inner product is zero.
[/ltr][/size]

  • Homogeneity: for x an element of V and r a scalar

[size][ltr]
Quantum Field Theory II - 页 3 E536e7ca51ee216cd0f6b58e50dcf92cThe homogeneity property is completely trivial to prove.
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 F0059ebfed92cf0d1c5d2822d5d7f515The last two properties show the function defined is indeed a norm.Because of the *** inequality and because of axiom 2, we see that ||·|| is a norm which turns V into a normed vector space and hence also into a metric space. The most important inner product spaces are the ones which are complete with respect to this metric; they are called Hilbert spaces. Every inner product V space is a dense subspace of some Hilbert space. This Hilbert space is essentially uniquely determined by V and is constructed by completing V.
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 C2c97a1d2d1bf668228f519352460c47The proof of the identity requires only expressing the definition of norm in terms of the inner product and multiplying out, using the property of additivity of each component.The name Pythagorean theorem arises from the geometric interpretation of this result as an analogue of the theorem in synthetic geometry. Note that the proof of the Pythagorean theorem in synthetic geometry is considerably more elaborate because of the paucity of underlying structure. In this sense, the synthetic Pythagorean theorem, if correctly demonstrated, is deeper than the version given above.An induction on the Pythagorean theorem yields:
[/ltr][/size]

  • If x1, ..., xn are orthogonal vectors, that is, Quantum Field Theory II - 页 3 Eb069149f12179c19a8c62de78e14c9a for distinct indices jk, then

[size][ltr]
Quantum Field Theory II - 页 3 Cef67fb810cfa3899bfcb8383441e2acIn view of the Cauchy-Schwarz inequality, we also note that Quantum Field Theory II - 页 3 E02eaeb6eb365f078ca029f67f7a6973 is continuous from V × V to F. This allows us to extend Pythagoras' theorem to infinitely many summands:
[/ltr][/size]

  • Parseval's identity: Suppose V is a complete inner product space. If {xk} are mutually orthogonal vectors in V then

[size][ltr]
Quantum Field Theory II - 页 3 79f3e653eab06993d08b35f1b094544fprovided the infinite series on the left is convergent. Completeness of the space is needed to ensure that the sequence of partial sumsQuantum Field Theory II - 页 3 Bce237f9db8d2835838a86be4ee545c1which is easily shown to be a Cauchy sequence, is convergent.
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 72cb715efa15bad1cce10004c05c2c4aThe Parallelogram law is, in fact, a necessary and sufficient condition for the existence of a scalar product corresponding to a given norm. If it holds, the scalar product is defined by the polarization identity:Quantum Field Theory II - 页 3 Abe3ca2f9996539f7d5d23b1819b1bc5which is a form of the law of cosines.

Orthonormal sequences[edit]

Let V be a finite dimensional inner product space of dimension n. Recall that every basis of V consists of exactly n linearly independent vectors. Using the Gram–Schmidt processwe may start with an arbitrary basis and transform it into an orthonormal basis. That is, into a basis in which all the elements are orthogonal and have unit norm. In symbols, a basis Quantum Field Theory II - 页 3 092ad46df478397cf8d666a34272feba is orthonormal if Quantum Field Theory II - 页 3 54757bb51d1f054beacb4abee713dc70 if Quantum Field Theory II - 页 3 1ccf3aafa41fa9e9817790bdb6bbfe21 and Quantum Field Theory II - 页 3 3c9f668adf7186094e5c49d64bebb07e for each i.
This definition of orthonormal basis generalizes to the case of infinite-dimensional inner product spaces in the following way. Let V be any inner product space. Then a collection
Quantum Field Theory II - 页 3 1d04ccf53f1f2ac07b5d966bfab23a33
is a basis for V if the subspace of V generated by finite linear combinations of elements of E is dense in V (in the norm induced by the inner product). We say that E is anorthonormal basis for V if it is a basis and
Quantum Field Theory II - 页 3 7e3049a7d9465d5121f0bffa87249f07
if Quantum Field Theory II - 页 3 6e88a07173be3454e88d61db0c69aa38 and Quantum Field Theory II - 页 3 1aef6cef837e5fc92f87aee3d61f3316 for all Quantum Field Theory II - 页 3 89b8595645c7f3eb11fd4e33224750f1.
Using an infinite-dimensional analog of the Gram-Schmidt process one may show:
Theorem. Any separable inner product space V has an orthonormal basis.
Using the Hausdorff maximal principle and the fact that in a complete inner product space orthogonal projection onto linear subspaces is well-defined, one may also show that
Theorem. Any complete inner product space V has an orthonormal basis.
The two previous theorems raise the question of whether all inner product spaces have an orthonormal basis. The answer, it turns out is negative. This is a non-trivial result, and is proved below. The following proof is taken from Halmos's A Hilbert Space Problem Book (see the references).

[/ltr][/size][th]Proof[/th][size][ltr]

Parseval's identity leads immediately to the following theorem:
Theorem. Let V be a separable inner product space and {ek}k an orthonormal basis of V. Then the map
Quantum Field Theory II - 页 3 8c71d6b484a5ab36c93c50ae3abf27e9
is an isometric linear map V →  2 with a dense image.
This theorem can be regarded as an abstract form of Fourier series, in which an arbitrary orthonormal basis plays the role of the sequence of trigonometric polynomials. Note that the underlying index set can be taken to be any countable set (and in fact any set whatsoever, provided  2 is defined appropriately, as is explained in the article Hilbert space). In particular, we obtain the following result in the theory of Fourier series:
Theorem. Let V be the inner product space Quantum Field Theory II - 页 3 8844ac48264a6497b40d9944f38b443b. Then the sequence (indexed on set of all integers) of continuous functions
Quantum Field Theory II - 页 3 38d1605358a783ad2697adb1f40c32b1
is an orthonormal basis of the space Quantum Field Theory II - 页 3 8844ac48264a6497b40d9944f38b443b with the L2 inner product. The mapping
Quantum Field Theory II - 页 3 7a348854edf3a7bffd27e15f8717a65f
is an isometric linear map with dense image.
Orthogonality of the sequence {ek}k follows immediately from the fact that if k ≠ j, then
Quantum Field Theory II - 页 3 91db8cfd79c0791fca4021de652c672c
Normality of the sequence is by design, that is, the coefficients are so chosen so that the norm comes out to 1. Finally the fact that the sequence has a dense algebraic span, in the inner product norm, follows from the fact that the sequence has a dense algebraic span, this time in the space of continuous periodic functions on Quantum Field Theory II - 页 3 911bebeafbf3d4845e122edfc4f667f8 with the uniform norm. This is the content of the Weierstrass theorem on the uniform density of trigonometric polynomials.

Operators on inner product spaces[edit]

Several types of linear maps A from an inner product space V to an inner product space W are of relevance:
[/ltr][/size]

  • Continuous linear maps, i.e., A is linear and continuous with respect to the metric defined above, or equivalently, A is linear and the set of non-negative reals {‖Ax‖}, where xranges over the closed unit ball of V, is bounded.
  • Symmetric linear operators, i.e., A is linear and Quantum Field Theory II - 页 3 8eec0c056e502a139bac5cb59630f17c for all xy in V.
  • Isometries, i.e., A is linear and Quantum Field Theory II - 页 3 D6f6ae79328dc24dc6092e6de97f462f for all xy in V, or equivalently, A is linear and Ax‖ = ‖x for all x in V. All isometries are injective. Isometries aremorphisms between inner product spaces, and morphisms of real inner product spaces are orthogonal transformations (compare with orthogonal matrix).
  • Isometrical isomorphisms, i.e., A is an isometry which is surjective (and hence bijective). Isometrical isomorphisms are also known as unitary operators (compare with unitary matrix).

[size][ltr]
From the point of view of inner product space theory, there is no need to distinguish between two spaces which are isometrically isomorphic. The spectral theorem provides a canonical form for symmetric, unitary and more generally normal operators on finite dimensional inner product spaces. A generalization of the spectral theorem holds for continuous normal operators in Hilbert spaces.

Generalizations[edit]

Any of the axioms of an inner product may be weakened, yielding generalized notions. The generalizations that are closest to inner products occur where bilinearity and conjugate symmetry are retained, but positive-definiteness is weakened.

Degenerate inner products[edit]

If V is a vector space and Quantum Field Theory II - 页 3 E02eaeb6eb365f078ca029f67f7a6973 a semi-definite sesquilinear form, then the function:
Quantum Field Theory II - 页 3 1e2bece5ab0bb4530d61ea94710f5968
makes sense and satisfies all the properties of norm except that ‖x‖ = 0 does not imply x = 0 (such a functional is then called a semi-norm). We can produce an inner product space by considering the quotient W = V/{ x : ‖x‖ = 0}. The sesquilinear form Quantum Field Theory II - 页 3 5fe4ded447803921e2da538049d9bd8c factors through W.
This construction is used in numerous contexts. The Gelfand–Naimark–Segal construction is a particularly important example of the use of this technique. Another example is the representation of semi-definite kernels on arbitrary sets.

Nondegenerate conjugate symmetric forms[edit]

Main article: Pseudo-Euclidean space
Alternatively, one may require that the pairing be a nondegenerate form, meaning that for all non-zero x there exists some y such that Quantum Field Theory II - 页 3 75ef40dcaec60cb03dc54014d8ba6c43 though y need not equal x; in other words, the induced map to the dual space V → V* is injective. This generalization is important in differential geometry: a manifold whose tangent spaces have an inner product is a Riemannian manifold, while if this is related to nondegenerate conjugate symmetric form the manifold is a pseudo-Riemannian manifold. By Sylvester's law of inertia, just as every inner product is similar to the dot product with positive weights on a set of vectors, every nondegenerate conjugate symmetric form is similar to the dot product withnonzero weights on a set of vectors, and the number of positive and negative weights are called respectively the positive index and negative index. Product of vectors in Minkowski space is an example of indefinite inner product, although, technically speaking, it is not an inner product according to the standard definition above. Minkowski space has fourdimensions and indices 3 and 1 (assignment of "+" and "−" to them differs depending on conventions).
Purely algebraic statements (ones that do not use positivity) usually only rely on the nondegeneracy (the injective homomorphism V → V*) and thus hold more generally.

Related products[edit]

The term "inner product" is opposed to outer product, which is a slightly more general opposite. Simply, in coordinates, the inner product is the product of a 1×n covector with ann×1 vector, yielding a 1×1 matrix (a scalar), while the outer product is the product of an m×1 vector with a 1×n covector, yielding an m×n matrix. Note that the outer product is defined for different dimensions, while the inner product requires the same dimension. If the dimensions are the same, then the inner product is the trace of the outer product (trace only being properly defined for square matrices).
On an inner product space, or more generally a vector space with a nondegenerate form (so an isomorphism V → V*) vectors can be sent to covectors (in coordinates, via transpose), so one can take the inner product and outer product of two vectors, not simply of a vector and a covector.
In a quip: "inner is horizontal times vertical and shrinks down, outer is vertical times horizontal and expands out".
More abstractly, the outer product is the bilinear map Quantum Field Theory II - 页 3 52d09587552d7d16ec50de7fd9633815 sending a vector and a covector to a rank 1 linear transformation (simple tensor of type (1,1)), while the inner product is the bilinear evaluation map Quantum Field Theory II - 页 3 08a9b0349bead926d0db05b6d3b2bb02 given by evaluating a covector on a vector; the order of the domain vector spaces here reflects the covector/vector distinction.
The inner product and outer product should not be confused with the interior product and exterior product, which are instead operations on vector fields and differential forms, or more generally on the exterior algebra.
As a further complication, in geometric algebra the inner product and the exterior (Grassmann) product are combined in the geometric product (the Clifford product in a Clifford algebra) – the inner product sends two vectors (1-vectors) to a scalar (a 0-vector), while the exterior product sends two vectors to a bivector (2-vector) – and in this context the exterior product is usually called the "outer (alternatively, wedge) product". The inner product is more correctly called a scalar product in this context, as the nondegenerate quadratic form in question need not be positive definite (need not be an inner product).

See also[edit]

[/ltr][/size]
[size][ltr]

Notes and in-line references[edit]

[/ltr][/size][list=references]
[*]Jump up^ P. K. Jain, Khalil Ahmad (1995). "5.1 Definitions and basic properties of inner product spaces and Hilbert spaces"Functional analysis (2nd ed.). New Age International. p. 203.ISBN 81-224-0801-X.

[*]Jump up^ Eduard Prugovec̆ki (1981). "Definition 2.1"Quantum mechanics in Hilbert space (2nd ed.). Academic Press. pp. 18 ffISBN 0-12-566060-X.

[*]Jump up^ Emch, Gerard G. (1972). Algebraic methods in statistical mechanics and quantum field theory. New York: Wiley-InterscienceISBN 978-0-471-23900-0.

[*]Jump up^ P. K. Jain, Khalil Ahmad (1995). "Example 5". Cited work. p. 209. ISBN 81-224-0801-X.

[*]Jump up^ Karen Saxe (2002). Beginning functional analysis. Springer. p. 7. ISBN 0-387-95224-1.

[/list]
[size][ltr]

References[edit]

[/ltr][/size]



[list=references]
[*]Jump up^ the complex conjugate of any Complex number Quantum Field Theory II - 页 3 3de90564c61daf602b582735803fed9c is Quantum Field Theory II - 页 3 72e2c166bb5141005240142bb602a280. Often when dealing with Complex numbers the complex conjugate of a complex quantity Quantum Field Theory II - 页 3 Fbade9e36a3f36d3d676c1b808451dd7 is symbolized by Quantum Field Theory II - 页 3 0cc470782ffd36c8512044e94abc83bc.
[/list]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-30, 01:09

Bra–ket notation

From Wikipedia, the free encyclopedia
























[th]Quantum mechanics[/th][ltr]
In quantum mechanicsbra-ket notation is a standard notation for describing quantum states, composed of angle brackets and vertical bars. It can also be used to denote abstract vectors and linear functionals in mathematics. It is so called because the inner product (or dot product on a complex vector space) of two states is denoted by
Quantum Field Theory II - 页 3 A37a823bc542a1d3653f8279ff8b43d3,
consisting of a left part, Quantum Field Theory II - 页 3 26c149f89e6a941ebcf665bee475c9f0 called the bra /brɑː/, and a right part, Quantum Field Theory II - 页 3 605b44d27aad3e8e841b1dd43053faa1, called the ket /kɛt/. The notation was introduced in 1939 by Paul Dirac[1] and is also known as Dirac notation, though the notation has precursors in Grassmann's use of the notation Quantum Field Theory II - 页 3 971f62ad54ee09d21680bbf9e8ef071b for his inner products nearly 100 years previously.[2][3]
Bra-ket notation is widespread in quantum mechanics: almost every phenomenon that is explained using quantum mechanics—including a large portion of modern physics — is usually explained with the help of bra-ket notation. Part of the appeal of the notation is the abstract representation-independence it encodes, together with its versatility in producing a specific representation (e.g. x, or p, or eigenfunction base) without much ado, or excessive reliance on the nature of the linear spaces involved. The overlap expression Quantum Field Theory II - 页 3 A37a823bc542a1d3653f8279ff8b43d3 is typically interpreted as the probability amplitude for the state ψ to collapse into the state φ.[/ltr]

[ltr]

Contents



  [hide[/ltr]




[ltr]

Vector spaces[edit]



Background: Vector spaces[edit]



Main article: Vector space
In physics, basis vectors allow any Euclidean vector to be represented geometrically using angles and lengths, in different directions, i.e. in terms of the spatial orientations. It is simpler to see the notational equivalences between ordinary notation and bra-ket notation; so, for now, consider a vector A starting at the origin and ending at an element of 3-dEuclidean space; the vector then is specified by this end-point, a triplet of elements in the field of real numbers, symbolically dubbed as A ∈ ℝ3.
The vector A can be written using any set of basis vectors and corresponding coordinate system. Informally basis vectors are like "building blocks of a vector": they are added together to compose a vector, and the coordinates are the numerical coefficients of basis vectors in each direction. Two useful representations of a vector are simply a linear combination of basis vectors, and column matrices. Using the familiar Cartesian basis, a vector A may be written as
Quantum Field Theory II - 页 3 681e394a76b571f74952b3e8f38309faQuantum Field Theory II - 页 3 5b7edd7f40a5ebe26a51cf79817a9834[/ltr]

Quantum Field Theory II - 页 3 400px-Vector_components_bases_projection.svg


3d real vector components and bases projection; similarities between vector calculus notation and Dirac notation. Projection is an important feature of the Dirac notation.

[ltr]
respectively, where exeyez denote the Cartesian basis vectors (all are orthogonal unit vectors) and AxAy,Az are the corresponding coordinates, in the xyz directions. In a more general notation, for any basis in 3-d space one writes
Quantum Field Theory II - 页 3 45c2aa31652f94c17ffaffc7fac13aa6
Generalizing further, consider a vector A in an N-dimensional vector space over the field of complex numbers, symbolically stated as A ∈ ℂN. The vector A is still conventionally represented by a linear combination of basis vectors or a column matrix:
Quantum Field Theory II - 页 3 70a669f1e2cbe0aeb798be5782a6276b
though the coordinates are now all complex-valued.
Even more generally, A can be a vector in a complex Hilbert space. Some Hilbert spaces, like N, have finite dimension, while others have infinite dimension. In an infinite-dimensional space, the column-vector representation of A would be a list of infinitely many complex numbers.

Ket notation for vectors[edit]



Rather than boldtype, over arrows, underscores etc. conventionally used elsewhere; Quantum Field Theory II - 页 3 C10fe46bfc6bdf0ba9bd964e312cd176, Dirac's notation for a vector uses vertical bars and angular brackets: Quantum Field Theory II - 页 3 399597798681c60dde080809f9db0779. When this notation is used, these vectors are called "ket", read as "ket-A".[4] This applies to all vectors, the resultant vector and the basis. The previous vectors are now written
Quantum Field Theory II - 页 3 Bc2899e662e66d12d528e5d9d41c149f
or in a more easily generalized notation,
Quantum Field Theory II - 页 3 859cb44fb97ae66efe8b349b9278faff
The last one may be written in short as
Quantum Field Theory II - 页 3 Ff0fc9883dfc312a00b47946b6fd1777
Note how any symbols, letters, numbers, or even words — whatever serves as a convenient label — can be used as the label inside a ket. In other words, the symbol |A has a specific and universal mathematical meaning, while just the "A" by itself does not. Nevertheless, for convenience, there is usually some logical scheme behind the labels inside kets, such as the common practice of labeling energy eigenkets in quantum mechanics through a listing of their quantum numbers. Further note that a ket and its representationby a coordinate vector are not the same mathematical object: a ket does not require specification of a basis, whereas the coordinate vector needs a basis in order to be well defined (the same holds for an operator and its representation by a matrix).[5] In this context, one should best use a symbol different than the equal sign, for example the symbol , read as "is represented by".

Inner products and bras[edit]



Main article: Inner product
An inner product is a generalization of the dot product. The inner product of two vectors is a complex number. bra-ket notation uses a specific notation for inner products:
Quantum Field Theory II - 页 3 A74372f67d7fd28ff692ba4a5bbb058e
For example, in three-dimensional complex Euclidean space,
Quantum Field Theory II - 页 3 27eca932585feaea84fde9c19622323e
where Quantum Field Theory II - 页 3 2df44d4071a0cba909ca46b6da0428bd denotes the complex conjugate of Ai. A special case is the inner product of a vector with itself, which is the square of its norm (magnitude):
Quantum Field Theory II - 页 3 D72d24a247006098b2eda924fe16f1d4
bra-ket notation splits this inner product (also called a "bracket") into two pieces, the "bra" and the "ket":
Quantum Field Theory II - 页 3 D4526eeb93850eca3a5499d5558a9560
where A| is called a bra, read as "bra-A", and |B is a ket as above.
The purpose of "splitting" the inner product into a bra and a ket is that both the bra A| and the ket |B are meaningful on their own, and can be used in other contexts besides within an inner product. There are two main ways to think about the meanings of separate bras and kets:

Bras and kets as row and column vectors[edit]



For a finite-dimensional vector space, using a fixed orthonormal basis, the inner product can be written as a matrix multiplication of a row vector with a column vector:
Quantum Field Theory II - 页 3 98ef6f7d128a19846e19bf287a3094ef
Based on this, the bras and kets can be defined as:
Quantum Field Theory II - 页 3 A3c5a30f4bfb39607103e5cb2d6d4b26Quantum Field Theory II - 页 3 C1b7a238e92e5d18ab9da02db2f785ed
and then it is understood that a bra next to a ket implies matrix multiplication.
The conjugate transpose (also called Hermitian conjugate) of a bra is the corresponding ket and vice versa:
Quantum Field Theory II - 页 3 9130b0439840a0c3ce563eae7e2d3d95
because if one starts with the bra
Quantum Field Theory II - 页 3 90da3263e85aa7e637f12be73ca86ecc
then performs a complex conjugation, and then a matrix transpose, one ends up with the ket
Quantum Field Theory II - 页 3 829a8af3dd9923b45199f3a6f1b428a6

Bras as linear operators on kets[edit]



Main articles: Dual space and Riesz representation theorem
A more abstract definition, which is equivalent but more easily generalized to infinite-dimensional spaces, is to say that bras are linear functionals on kets, i.e. operators that input a ket and output a complex number. The bra operators are defined to be consistent with the inner product.
In mathematics terminology, the vector space of bras is the dual space to the vector space of kets, and corresponding bras and kets are related by the Riesz representation theorem.

Non-normalizable states and non-Hilbert spaces[edit]



bra-ket notation can be used even if the vector space is not a Hilbert space.
In quantum mechanics, it is common practice to write down kets which have infinite norm, i.e. non-normalisable wavefunctions. Examples include states whose wavefunctions areDirac delta functions or infinite plane waves. These do not, technically, belong to the Hilbert space itself. However, the definition of "Hilbert space" can be broadened to accommodate these states (see the Gelfand–Naimark–Segal construction or rigged Hilbert spaces). The bra-ket notation continues to work in an analogous way in this broader context.
For a rigorous treatment of the Dirac inner product of non-normalizable states, see the definition given by D. Carfì.[6][7] For a rigorous definition of basis with a continuous set of indices and consequently for a rigorous definition of position and momentum basis, see.[8] For a rigorous statement of the expansion of an S-diagonalizable operator, or observable, in its eigenbasis or in another basis, see.[9]
Banach spaces are a different generalization of Hilbert spaces. In a Banach space B, the vectors may be notated by kets and the continuous linear functionals by bras. Over any vector space without topology, we may also notate the vectors by kets and the linear functionals by bras. In these more general contexts, the bracket does not have the meaning of an inner product, because the Riesz representation theorem does not apply.

Usage in quantum mechanics[edit]



The mathematical structure of quantum mechanics is based in large part on linear algebra:[/ltr]


  • Wave functions and other quantum states can be represented as vectors in a complex Hilbert space. (The exact structure of this Hilbert space depends on the situation.) In bra-ket notation, for example, an electron might be in the "state" |ψ. (Technically, the quantum states are rays of vectors in the Hilbert space, as c|ψ corresponds to the same state for any nonzero complex number c.)
  • Quantum superpositions can be described as vector sums of the constituent states. For example, an electron in the state |1⟩ + i |2⟩ is in a quantum superposition of the states |1⟩ and |2⟩.
  • Measurements are associated with linear operators (called observables) on the Hilbert space of quantum states.
  • Dynamics are also described by linear operators on the Hilbert space. For example, in the Schrödinger picture, there is a linear time evolution operator U with the property that if an electron is in state |ψ right now, then in one second it will be in the state U|ψ, the same U for every possible |ψ.
  • Wave function normalization is scaling a wave function so that its norm is 1.


[ltr]
Since virtually every calculation in quantum mechanics involves vectors and linear operators, it can involve, and often does involve, bra-ket notation. A few examples follow:

Spinless position–space wave function[edit]

[/ltr]

Quantum Field Theory II - 页 3 225px-Discrete_complex_vector_components.svg

Discrete components Ak of a complex vector |A⟩ = ∑k Ak|ek, which belongs to a countably infinite-dimensional Hilbert space; there are countably infinitely many k values and basis vectors |ek.

Quantum Field Theory II - 页 3 230px-Continuous_complex_vector_components.svg

Continuous components ψ(x) of a complex vector |ψ⟩ = ∫ dx ψ(x)|x, which belongs to an uncountably infinite-dimensional Hilbert space; there are infinitely many x values and basis vectors|x.

Components of complex vectors plotted against index number; discrete k and continuous x. Two particular components out of infinitely many are highlighted.

[ltr]
The Hilbert space of a spin-0 point particle is spanned by a "position basis{ |r⟩ }, where the labelr extends over the set of all points in position space. Since there are uncountably infinitely many vectors in the basis, this is an uncountably infinite-dimensional Hilbert space. The dimensions of the Hilbert space (usually infinite) and position space (usually 1, 2 or 3) are not to be conflated.
Starting from any ket |Ψ in this Hilbert space, we can define a complex scalar function of r, known as a wavefunction:
Quantum Field Theory II - 页 3 E32f18a1e7020f1962750d5f4cc017df .
On the left side, Ψ(r) is a function mapping any point in space to a complex number; on the right side, |Ψ⟩ = ∫ d3r Ψ(r) |r is a ket.
It is then customary to define linear operators acting on wavefunctions in terms of linear operators acting on kets, by
Quantum Field Theory II - 页 3 34e9b7dc1074bc70f37c69cdd3f680cb
For instance, the momentum operator p has the following form,
Quantum Field Theory II - 页 3 Da9b5765204b257367ec1229c97e5394
One occasionally encounters a sloppy expression like
Quantum Field Theory II - 页 3 192c9a3e83dbaf455c222ec70a30a9c6
though this is something of a (common) abuse of notation. The differential operator must be understood to be an abstract operator, acting on kets, that has the effect of differentiating wavefunctions once the expression is projected into the position basis,
Quantum Field Theory II - 页 3 26002364a5f94c986f66599fccfa0564
even though, in the momentum basis, the operator amounts to a mere multiplication operator (by iħp).

Overlap of states[edit]



In quantum mechanics the expression φ|ψ is typically interpreted as the probability amplitude for the state ψ to collapse into the state φ. Mathematically, this means the coefficient for the projection of ψ onto φ. It is also described as the projection of state ψ onto state φ.

Changing basis for a spin-1/2 particle[edit]



A stationary spin-½ particle has a two-dimensional Hilbert space. One orthonormal basis is:
Quantum Field Theory II - 页 3 D44cef66ec411ae580079d7edd4d558f
where Quantum Field Theory II - 页 3 2235e0bdfa5b8eef5e046349f5c27a1b is the state with a definite value of the spin operator Sz equal to +1/2 and Quantum Field Theory II - 页 3 Adf97b0b9a547ecedf441016d843f23b is the state with a definite value of the spin operator Sz equal to −1/2.
Since these are a basisany quantum state of the particle can be expressed as a linear combination (i.e., quantum superposition) of these two states:
Quantum Field Theory II - 页 3 F1428b9e010c0fd8cca2168263f2514e
where aψbψ are complex numbers.
different basis for the same Hilbert space is:
Quantum Field Theory II - 页 3 Ae67bd3c994d622d025dfdd5ba222242
defined in terms of Sx rather than Sz.
Again, any state of the particle can be expressed as a linear combination of these two:
Quantum Field Theory II - 页 3 F71639805cff4c39275d8c2df67a913d
In vector form, you might write
Quantum Field Theory II - 页 3 6de9161ea0a50e0826f2f60bca672af4
depending on which basis you are using. In other words, the "coordinates" of a vector depend on the basis used.
There is a mathematical relationship between aψbψcψdψ; see change of basis.

[/ltr]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-30, 01:10

[ltr]

Misleading uses[size=13][edit]

There are a few conventions and abuses of notation that are generally accepted by the physics community, but which might confuse the non-initiated.
It is common among physicists to use the same symbol for labels and constants in the same equation. It supposedly becomes easier to identify that the constant is related to the labeled object, and is claimed that the divergent nature of each will eliminate any ambiguity and no further differentiation is required. For example, α̂ |α⟩ = α|α, where the symbol α is used simultaneously as the name of the operator α̂, its eigenvector |α and the associated eigenvalue α.
Something similar occurs in component notation of vectors. While Ψ (uppercase) is traditionally associated with wavefunctions, ψ (lowercase) may be used to denote a label, awave function or complex constant in the same context, usually differentiated only by a subscript.
The main abuses are including operations inside the vector labels. This is usually done for a fast notation of scaling vectors. E.g. if the vector |α is scaled by √2, it might be denoted by |α/√2⟩, which makes no sense since α is a label, not a function or a number, so you can't perform operations on it.
This is especially common when denoting vectors as tensor products, where part of the labels are moved outside the designed slot. E.g. |α⟩ = |α/√2⟩1 ⊗ |α/√2⟩2. Here part of the labeling that should state that all three vectors are different was moved outside the kets, as subscripts 1 and 2. And a further abuse occurs, since α is meant to refer to the norm of the first vector – which is a label is denoting a value.

Linear operators[edit]

See also: Linear operator

Linear operators acting on kets[edit]

linear operator is a map that inputs a ket and outputs a ket. (In order to be called "linear", it is required to have certain properties.) In other words, if A is a linear operator and|ψ is a ket, then A|ψ is another ket.
In an N-dimensional Hilbert space, |ψ can be written as an N×1 column vector, and then A is an N×N matrix with complex entries. The ket A|ψ can be computed by normalmatrix multiplication.
Linear operators are ubiquitous in the theory of quantum mechanics. For example, observable physical quantities are represented by self-adjoint operators, such as energy ormomentum, whereas transformative processes are represented by unitary linear operators such as rotation or the progression of time.

Linear operators acting on bras[edit]

Operators can also be viewed as acting on bras from the right hand side. Specifically, if A is a linear operator and φ| is a bra, then φ|A is another bra defined by the rule
Quantum Field Theory II - 页 3 92fb99bba5275ab89e26ca130957185f
(in other words, a function composition). This expression is commonly written as (cf. energy inner product)
Quantum Field Theory II - 页 3 7e14c26a05f1e347cc0e866a36da3e50 .
In an N-dimensional Hilbert space, φ| can be written as a N row vector, and A (as in the previous section) is an N×N matrix. Then the bra φ|A can be computed by normalmatrix multiplication.
If the same state vector appears on both bra and ket side,
Quantum Field Theory II - 页 3 Adcdaa8687e128cda02759df79a7620c
then this expression gives the expectation value, or mean or average value, of the observable represented by operator A for the physical system in the state |ψ.

Outer products[edit]

A convenient way to define linear operators on H is given by the outer product: if φ| is a bra and |ψ is a ket, the outer product
Quantum Field Theory II - 页 3 Da4fa9270c1fd5cb55772773d972df88
denotes the rank-one operator that maps the ket |ρ to the ket |φ⟩⟨ψ|ρ (where ψ|ρ is a scalar multiplying the vector |φ).
For a finite-dimensional vector space, the outer product can be understood as simple matrix multiplication:
Quantum Field Theory II - 页 3 A77601673298de803b7e48eb356796fd
The outer product is an N×N matrix, as expected for a linear operator.
One of the uses of the outer product is to construct projection operators. Given a ket |ψ of norm 1, the orthogonal projection onto the subspace spanned by |ψ is
Quantum Field Theory II - 页 3 998b8cffb5be84f480a0d84e63a79505

Hermitian conjugate operator[edit]

Main article: Hermitian conjugate
Just as kets and bras can be transformed into each other (*** |ψ into ψ|), the element from the dual space corresponding to A|ψ is ψ|A, where A denotes theHermitian conjugate (or adjoint) of the operator A. In other words,
Quantum Field Theory II - 页 3 4801430a33df8c044dad86ce2299e14d   if and only if   Quantum Field Theory II - 页 3 F4938a03955fa1204bd9ff7aa2e4f714 .
If A is expressed as an N×N matrix, then A is its conjugate transpose.
Self-adjoint operators, where A = A, play an important role in quantum mechanics; for example, an observable is always described by a self-adjoint operator. If A is a self-adjoint operator, then ψ|A|ψ is always a real number (not complex). This implies that expectation values of observables are real.

Properties[edit]

bra-ket notation was designed to facilitate the formal manipulation of linear-algebraic expressions. Some of the properties that allow this manipulation are listed herein. In what follows, c1 and c2 denote arbitrary complex numbersc denotes the complex conjugate of cA and B denote arbitrary linear operators, and these properties are to hold for any choice of bras and kets.

Linearity[edit]

[/ltr][/size]

  • Since bras are linear functionals,

[size][ltr]
Quantum Field Theory II - 页 3 A0a7c9571ec8ed1026f4744e88223835
[/ltr][/size]

  • By the definition of addition and scalar multiplication of linear functionals in the dual space,[10]

[size][ltr]
Quantum Field Theory II - 页 3 D937994adeb07b75b7a984799d7035b2

Associativity[edit]

Given any expression involving complex numbers, bras, kets, inner products, outer products, and/or linear operators (but not addition), written in bra-ket notation, the parenthetical groupings do not matter (i.e., the associative property holds). For example:
Quantum Field Theory II - 页 3 9971e88d33f388d448a132c6077fecd2Quantum Field Theory II - 页 3 Cf0bc00b6e7ff0cf88c8d5288f561950
and so forth. The expressions on the right (with no parentheses whatsoever) are allowed to be written unambiguously because of the equalities on the left. Note that the associative property does not hold for expressions that include non-linear operators, such as the antilinear time reversal operator in physics.

Hermitian conjugation[edit]

bra-ket notation makes it particularly easy to compute the Hermitian conjugate (also called dagger, and denoted ) of expressions. The formal rules are:
[/ltr][/size]

  • The Hermitian conjugate of a bra is the corresponding ket, and vice-versa.
  • The Hermitian conjugate of a complex number is its complex conjugate.
  • The Hermitian conjugate of the Hermitian conjugate of anything (linear operators, bras, kets, numbers) is itself—i.e.,

[size][ltr]
(x) = x.
[/ltr][/size]

  • Given any combination of complex numbers, bras, kets, inner products, outer products, and/or linear operators, written in bra-ket notation, its Hermitian conjugate can be computed by reversing the order of the components, and taking the Hermitian conjugate of each.

[size][ltr]
These rules are sufficient to formally write the Hermitian conjugate of any such expression; some examples are as follows:
[/ltr][/size]

  • Kets:

[size][ltr]
Quantum Field Theory II - 页 3 E24731ce705cbff965708b6046bf097a
[/ltr][/size]

  • Inner products:

[size][ltr]
Quantum Field Theory II - 页 3 715fd5bd2c5eef3734914ca6be52100e
[/ltr][/size]

  • Matrix elements:

[size][ltr]
Quantum Field Theory II - 页 3 F71d65b7a44a25a0c0c5445b326a45a1Quantum Field Theory II - 页 3 E0f59b95fe6de05d2887f7c9a1193ffd
[/ltr][/size]

  • Outer products:

[size][ltr]
Quantum Field Theory II - 页 3 52bff125cddc352068f571bce0b3d483

Composite bras and kets[edit]

Two Hilbert spaces V and W may form a third space V ⊗ W by a tensor product. In quantum mechanics, this is used for describing composite systems. If a system is composed of two subsystems described in V and W respectively, then the Hilbert space of the entire system is the tensor product of the two spaces. (The exception to this is if the subsystems are actually identical particles. In that case, the situation is a little more complicated.)
If |ψ is a ket in V and |φ is a ket in W, the direct product of the two kets is a ket in V ⊗ W. This is written in various notations:
Quantum Field Theory II - 页 3 A4eea4d041f7ed0e20266ba9b886471d
See quantum entanglement and the EPR paradox for applications of this product.

The unit operator[edit]

Consider a complete orthonormal system (basis), Quantum Field Theory II - 页 3 D7c7fda2308876ffe461b5b3c61a630c, for a Hilbert space H, with respect to the norm from an inner product Quantum Field Theory II - 页 3 E02eaeb6eb365f078ca029f67f7a6973. From basic functional analysis we know that any ket |ψ can also be written as
Quantum Field Theory II - 页 3 5e6f0e6dc307f0303eea9ce85d022bf8
with Quantum Field Theory II - 页 3 6f5b0f39ab1f308f9a500bdece50367e the inner product on the Hilbert space.
From the commutativity of kets with (complex) scalars now follows that
Quantum Field Theory II - 页 3 C0d35f5a5604875b481bdb1dcf4af994
must be the identity operator, which sends each vector to itself. This can be inserted in any expression without affecting its value, for example
Quantum Field Theory II - 页 3 D2b004206dd4978c820e8a3d976e29d5 ,
where, in the last identity, the Einstein summation convention has been used.
In quantum mechanics, it often occurs that little or no information about the inner product Quantum Field Theory II - 页 3 C1d834a3f21e20f1c3ded5ff464b0091 of two arbitrary (state) kets is present, while it is still possible to say something about the expansion coefficients Quantum Field Theory II - 页 3 6c3c6843819666121e6d0deb6cef0f96 and Quantum Field Theory II - 页 3 7c079554b29f6f6ae9e687e64dbbddf7 of those vectors with respect to a specific (orthonormalized) basis. In this case, it is particularly useful to insert the unit operator into the bracket one time or more.
For more information, see Resolution of the identity1 = ∫ dx |x⟩⟨x| = ∫ dp |p⟩⟨p|, where |p⟩ = ∫ dx eixp|x⟩/√2πħ; since x′|x⟩ = δ(x − x′), plane waves follow,x|p⟩ = exp(ixp/ħ)/√2πħ.

Notation used by mathematicians[edit]

The object physicists are considering when using the "bra-ket" notation is a Hilbert space (a complete inner product space).
Let Quantum Field Theory II - 页 3 350860cf68ca8fd18af87b6ee9044fc7 be a Hilbert space and Quantum Field Theory II - 页 3 357bf06be900e382792bd9c7c74f40db is a vector in Quantum Field Theory II - 页 3 350860cf68ca8fd18af87b6ee9044fc7. What physicists would denote as |h is the vector itself. That is
Quantum Field Theory II - 页 3 10a56640c700bf0defdd7940ae12cb42.
Let Quantum Field Theory II - 页 3 3044d52bb6bdc051344ee2d6ca30358c be the dual space of Quantum Field Theory II - 页 3 350860cf68ca8fd18af87b6ee9044fc7. This is the space of linear functionals on Quantum Field Theory II - 页 3 350860cf68ca8fd18af87b6ee9044fc7. The isomorphism Quantum Field Theory II - 页 3 92f62064c5cab1c853cb1011f7f7d8cc is defined by Quantum Field Theory II - 页 3 1b3776c34539cdf9491bdb894ebc93b1 where for all Quantum Field Theory II - 页 3 734a1a75293349f6bcd1eadedec5ceeb we have
Quantum Field Theory II - 页 3 67d3d77ad05934608d0d0ba104389fe2,
where Quantum Field Theory II - 页 3 Dc269fef7b594328c23fb0ce11506812 and Quantum Field Theory II - 页 3 6f5b0f39ab1f308f9a500bdece50367e are just different notations for expressing an inner product between two elements in a Hilbert space (or for the first three, in any inner product space). Notational confusion arises when identifying Quantum Field Theory II - 页 3 464de31e4e29256726d8b6d7547e5e76 and Quantum Field Theory II - 页 3 B2f5ff47436671b6e533d8dc3614845d with Quantum Field Theory II - 页 3 F97a33face8ce55531da9ef369a468ee and Quantum Field Theory II - 页 3 E6e02f9f4e55d61f5e98a1068fe0e436 respectively. This is because of literal symbolic substitutions. Let Quantum Field Theory II - 页 3 2924861ed185b1499c04f040f9f32cbb and letQuantum Field Theory II - 页 3 Fe284f47d557f0ebe8fa7b2ddf031ef4. This gives
Quantum Field Theory II - 页 3 640accff0f637861782a5183bf068d65
One ignores the parentheses and removes the double bars. Some properties of this notation are convenient since we are dealing with linear operators and composition acts like aring multiplication.
Moreover, mathematicians usually write the dual entity not at the first place, as the physicists do, but at the second one, and they don't use the *-symbol, but an overline (which the physicists reserve for averages and Dirac conjugation) to denote conjugate-complex numbers, i.e. for scalar products mathematicians usually write
Quantum Field Theory II - 页 3 0a1a83087b374e8969f1d2f25dc81dc1
whereas physicists would write for the same quantity
Quantum Field Theory II - 页 3 E598db818cd3b0f89b269cc9c15e650a

See also[edit]

[/ltr][/size]
[size][ltr]

References and notes[edit]

[/ltr][/size][list=references]
[*]Jump up^ PAM Dirac (1939). "A new notation for quantum mechanics"Mathematical Proceedings of the Cambridge Philosophical Society 35 (3): 416–418. doi:10.1017/S0305004100021162.

[*]Jump up^ H. Grassmann (1862). Extension Theory. History of Mathematics Sources. American Mathematical Society, London Mathematical Society, 2000 translation by Lloyd C. Kannenberg.

[*]Jump up^ Cajori, Florian (1929). A History Of Mathematical Notations Volume IIOpen Court Publishing. p.  134. ISBN 978-0-486-67766-8.

[*]Jump up^ Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN(10-) 0-07-145546 9

[*]Jump up^ Modern Quantum Mechanics Revised Revision, Sakurai, p. 20

[*]Jump up^ Carfì, David (April 2003). "Dirac-orthogonality in the space of tempered distributions"Journal of Computational and Applied Mathematics 153 (1–2): 99–107.Bibcode:2003JCoAM.153...99Cdoi:10.1016/S0377-0427(02)00634-9.

[*]Jump up^ Carfì, David (April 2003). "Some properties of a new product in the space of tempered distributions"Journal of Computational and Applied Mathematics 153 (1–2): 109–118.Bibcode:2003JCoAM.153..109Cdoi:10.1016/S0377-0427(02)00635-0.

[*]Jump up^ Carfì, David (2007). "TOPOLOGICAL CHARACTERIZATIONS OF S-LINEARITY"AAPP-PHYSICAL, MATHEMATICAL AND NATURAL SCIENCES 85 (2): 1–16.doi:10.1478/C1A0702005.

[*]Jump up^ Carfì, David (2005). "S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS"Glasnik Matematicki 40 (2): 261–301. doi:10.3336/gm.40.2.08.

[*]Jump up^ Lecture notes by Robert Littlejohn, eqns 12 and 13

[/list]
[size][ltr]

Further reading[edit]

[/ltr][/size]

  • Feynman, Leighton and Sands (1965). The Feynman Lectures on Physics Vol. III. Addison-Wesley. ISBN 0-201-02115-3.

[size][ltr]

External links[edit]

[/ltr][/size]



一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 3 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-30, 01:11

Hilbert space

From Wikipedia, the free encyclopedia


[ltr]For the Hilbert space-filling curve, see Hilbert curve.
[/ltr]
Quantum Field Theory II - 页 3 220px-Standing_waves_on_a_string

The state of a vibrating string can be modeled as a point in a Hilbert space. The decomposition of a vibrating string into its vibrations in distinct overtonesis given by the projection of the point onto the coordinate axes in the space.
[size][ltr]
The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David HilbertErhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equationsquantum mechanicsFourier analysis (which includes applications to signal processing and heat transfer)—and ergodic theory, which forms the mathematical underpinning of thermodynamics.John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functionsspaces of sequencesSobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions.
Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analogs of the Pythagorean theorem andparallelogram law hold in a Hilbert space. At a deeper level, perpendicular projection onto a subspace (the analog of "dropping the altitude" of a ***) plays a significant role in optimization problems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to a set of coordinate axes (an orthonormal basis), in analogy with Cartesian coordinates in the plane. When that set of axes iscountably infinite, this means that the Hilbert space can also usefully be thought of in terms of infinite sequences that are square-summableLinear operators on a Hilbert space are likewise fairly concrete objects: in good cases, they are simply transformations that stretch the space by different factors in mutually perpendicular directions in a sense that is made precise by the study of their spectrum.

[/ltr][/size]
[ltr]

Contents

  [hide[/ltr]


[size][ltr]

Definition and illustration[edit]

Motivating example: Euclidean space[edit]

One of the most familiar examples of a Hilbert space is the Euclidean space consisting of three-dimensional vectors, denoted by R3, and equipped with the dot product. The dot product takes two vectors x and y, and produces a real number x·y. If x and y are represented in Cartesian coordinates, then the dot product is defined by
Quantum Field Theory II - 页 3 B7c88e97de73507d158254d59e2890ab
The dot product satisfies the properties:
[/ltr][/size][list="line-height: 1.6; margin-top: 0.3em; margin-right: 0px; margin-bottom: 0px; margin-left: 3.2em; padding-top: 0px; padding-right: 0px; padding-bottom: 0px; padding-left: 0px; list-style-image: none;"]
[*]It is symmetric in x and yx · y = y · x.
[*]It is linear in its first argument: (ax1 + bx2) · y = ax1 · y + bx2 · y for any scalars ab, and vectors x1x2, and y.
[*]It is positive definite: for all vectors xx · x ≥ 0, with equality if and only if x = 0.
[/list]
[size][ltr]
An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) inner product. A vector space equipped with such an inner product is known as a (real) inner product space. Every finite-dimensional inner product space is also a Hilbert space. The basic feature of the dot product that connects it with Euclidean geometry is that it is related to both the length (or norm) of a vector, denoted ||x||, and to the angle θ between two vectors x and y by means of the formula
Quantum Field Theory II - 页 3 076483779c5c16b864e8214e19350ae1
[/ltr][/size]
Quantum Field Theory II - 页 3 220px-Completeness_in_Hilbert_space

Completeness means that if a particle moves along the broken path (in blue) travelling a finite total distance, then the particle has a well-defined net displacement (in orange).
[size][ltr]
Multivariable calculus in Euclidean space relies on the ability to compute limits, and to have useful criteria for concluding that limits exist. Amathematical series
Quantum Field Theory II - 页 3 8dee225d226f63c6087f7e119bed96ea
consisting of vectors in R3 is absolutely convergent provided that the sum of the lengths converges as an ordinary series of real numbers:[1]
Quantum Field Theory II - 页 3 Ee0fcad6d161077de79555977c333068
Just as with a series of scalars, a series of vectors that converges absolutely also converges to some limit vector L in the Euclidean space, in the sense that
Quantum Field Theory II - 页 3 3a730e64e695be44b59dbe4aac4d59fe
This property expresses the completeness of Euclidean space: that a series that converges absolutely also converges in the ordinary sense.

Definition[edit]

Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.[2] To say thatH is a complex inner product space means that H is a complex vector space on which there is an inner product Quantum Field Theory II - 页 3 Fdca0bfccc74afcea2729558a4dd8a96 associating a complex number to each pair of elements x,yof H that satisfies the following properties:
[/ltr][/size]

  • The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:

[size][ltr]
Quantum Field Theory II - 页 3 Bcf4e3513dc1d65159dee0e80b1313ad
[/ltr][/size]

  • The inner product is linear in its first argument.[3] For all complex numbers a and b,

[size][ltr]
Quantum Field Theory II - 页 3 76dd350eac77d0e976a8568a39258822
[/ltr][/size]
[size][ltr]
Quantum Field Theory II - 页 3 9ee76c4938a5e3b729415ca021ccb917where the case of equality holds precisely when x = 0.
It follows from properties 1 and 2 that a complex inner product is antilinear in its second argument, meaning that
Quantum Field Theory II - 页 3 886233fd3a3290e4ca981247ba2cf9f3
A real inner product space is defined in the same way, except that H is a real vector space and the inner product takes real values. Such an inner product will be bilinear: that is, linear in each argument.
The norm is the real-valued function
Quantum Field Theory II - 页 3 56f4cf5f519e866711835d3ad18388fc
and the distance d between two points x,y in H is defined in terms of the norm by
Quantum Field Theory II - 页 3 A1cbf7117ba81a9e844c4b27525c8c80
That this function is a distance function means (1) that it is symmetric in x and y, (2) that the distance between x and itself is zero, and otherwise the distance between x and y must be positive, and (3) that the *** inequality holds, meaning that the length of one leg of a *** xyz cannot exceed the sum of the lengths of the other two legs:
Quantum Field Theory II - 页 3 3f426579fc0475ca3edbd849a96542b8
[/ltr][/size]
Quantum Field Theory II - 页 3 300px-Triangle_inequality_in_a_metric_space.svg
[size][ltr]
This last property is ultimately a consequence of the more fundamental Cauchy–Schwarz inequality, which asserts
Quantum Field Theory II - 页 3 69ed190bc991df5bbff403124123dad8
with equality if and only if x and y are linearly dependent.
Relative to a distance function defined in this way, any inner product space is a metric space, and sometimes is known as a pre-Hilbert space.[4] Any pre-Hilbert space that is additionally also a complete space is a Hilbert space. Completeness is expressed using a form of the Cauchy criterion for sequences in H: a pre-Hilbert space H is complete if every Cauchy sequence converges with respect to this norm to an element in the space. Completeness can be characterized by the following equivalent condition: if a series of vectors Quantum Field Theory II - 页 3 3f8ddc46d9e575b0480b39d6e7bb9abf converges absolutely in the sense that
Quantum Field Theory II - 页 3 5a85a4315c85179232d30a0b17b74a39
then the series converges in H, in the sense that the partial sums converge to an element of H.
As a complete normed space, Hilbert spaces are by definition also Banach spaces. As such they are topological vector spaces, in which topological notions like the openness andclosedness of subsets are well-defined. Of special importance is the notion of a closed linear subspace of a Hilbert space that, with the inner product induced by restriction, is also complete (being a closed set in a complete metric space) and therefore a Hilbert space in its own right.

Second example: sequence spaces[edit]

The sequence space 2 consists of all infinite sequences z = (z1,z2,...) of complex numbers such that the series
Quantum Field Theory II - 页 3 C98b28419122889fde16a63d3f6264df
converges. The inner product on 2 is defined by
Quantum Field Theory II - 页 3 000d46a371198a5704b713cb8e842e9a
with the latter series converging as a consequence of the Cauchy–Schwarz inequality.
Completeness of the space holds provided that whenever a series of elements from 2 converges absolutely (in norm), then it converges to an element of 2. The proof is basic inmathematical analysis, and permits mathematical series of elements of the space to be manipulated with the same ease as series of complex numbers (or vectors in a finite-dimensional Euclidean space).[5]

History[edit]

[/ltr][/size][size][ltr]
Prior to the development of Hilbert spaces, other generalizations of Euclidean spaces were known to mathematicians and physicists. In particular, the idea of an abstract linear space had gained some traction towards the end of the 19th century:[6] this is a space whose elements can be added together and multiplied by scalars (such as real or complex numbers) without necessarily identifying these elements with "geometric" vectors, such as position and momentum vectors in physical systems. Other objects studied by mathematicians at the turn of the 20th century, in particular spaces of sequences (including series) and spaces of functions,[7] can naturally be thought of as linear spaces. Functions, for instance, can be added together or multiplied by constant scalars, and these operations obey the algebraic laws satisfied by addition and scalar multiplication of spatial vectors.
In the first decade of the 20th century, parallel developments led to the introduction of Hilbert spaces. The first of these was the observation, which arose during David Hilbert and Erhard Schmidt's study of integral equations,[8] that two square-integrable real-valued functions f and g on an interval [a,b] have an inner product
Quantum Field Theory II - 页 3 103abd6243da33ed7fad9b17ff88d12d
which has many of the familiar properties of the Euclidean dot product. In particular, the idea of an orthogonal family of functions has meaning. Schmidt exploited the similarity of this inner product with the usual dot product to prove an analog of the spectral decompositionfor an operator of the form
Quantum Field Theory II - 页 3 6501b105010ee717d1f91316e623bdbb
where K is a continuous function symmetric in x and y. The resulting eigenfunction expansion expresses the function K as a series of the form
Quantum Field Theory II - 页 3 Cf7ba3439c6c4a8f13b66fe5631df3fa
where the functions φn are orthogonal in the sense that ⟨φn,φm⟩ = 0 for all n ≠ m. The individual terms in this series are sometimes referred to as elementary product solutions. However, there are eigenfunction expansions that fail to converge in a suitable sense to a square-integrable function: the missing ingredient, which ensures convergence, is completeness.[9]
The second development was the Lebesgue integral, an alternative to the Riemann integral introduced by Henri Lebesgue in 1904.[10] The Lebesgue integral made it possible to integrate a much broader class of functions. In 1907, Frigyes Riesz and Ernst Sigismund Fischer independently proved that the space L2 of square Lebesgue-integrable functions is a complete metric space.[11] As a consequence of the interplay between geometry and completeness, the 19th century results of Joseph FourierFriedrich Bessel and Marc-Antoine Parseval on trigonometric series easily carried over to these more general spaces, resulting in a geometrical and analytical apparatus now usually known as the Riesz–Fischer theorem.[12]
Further basic results were proved in the early 20th century. For example, the Riesz representation theorem was independently established by Maurice Fréchet and Frigyes Rieszin 1907.[13] John von Neumann coined the term abstract Hilbert space in his work on unbounded Hermitian operators.[14] Although other mathematicians such as Hermann Weyland Norbert Wiener had already studied particular Hilbert spaces in great detail, often from a physically motivated point of view, von Neumann gave the first complete and axiomatic treatment of them.[15] Von Neumann later used them in his seminal work on the foundations of quantum mechanics,[16] and in his continued work with Eugene Wigner. The name "Hilbert space" was soon adopted by others, for example by Hermann Weyl in his book on quantum mechanics and the theory of groups.[17]
The significance of the concept of a Hilbert space was underlined with the realization that it offers one of the best mathematical formulations of quantum mechanics.[18] In short, the states of a quantum mechanical system are vectors in a certain Hilbert space, the observables are hermitian operators on that space, the symmetries of the system are unitary operators, and measurements are orthogonal projections. The relation between quantum mechanical symmetries and unitary operators provided an impetus for the development of the unitary representation theory of groups, initiated in the 1928 work of Hermann Weyl.[17] On the other hand, in the early 1930s it became clear that classical mechanics can be described in terms of Hilbert space (Koopman–von Neumann classical mechanics) and that certain properties of classical dynamical systems can be analyzed using Hilbert space techniques in the framework of ergodic theory.[19]
The algebra of observables in quantum mechanics is naturally an algebra of operators defined on a Hilbert space, according to Werner Heisenberg's matrix mechanics formulation of quantum theory. Von Neumann began investigating operator algebras in the 1930s, as rings of operators on a Hilbert space. The kind of algebras studied by von Neumann and his contemporaries are now known as von Neumann algebras. In the 1940s, Israel GelfandMark Naimark and Irving Segal gave a definition of a kind of operator algebras calledC*-algebras that on the one hand made no reference to an underlying Hilbert space, and on the other extrapolated many of the useful features of the operator algebras that had previously been studied. The spectral theorem for self-adjoint operators in particular that underlies much of the existing Hilbert space theory was generalized to C*-algebras. These techniques are now basic in abstract harmonic analysis and representation theory.

Examples[edit]

Lebesgue spaces[edit]

Main article: Lp space
Lebesgue spaces are function spaces associated to measure spaces (XMμ), where X is a set, M is a σ-algebra of subsets of X, and μ is a countably additive measure on M. LetL2(X, μ) be the space of those complex-valued measurable functions on X for which the Lebesgue integral of the square of the absolute value of the function is finite, i.e., for a function f in L2(X,μ),
Quantum Field Theory II - 页 3 Ebe90e813e7e767e4906650b08b656be
and where functions are identified if and only if they differ only on a set of measure zero.
The inner product of functions f and g in L2(X, μ) is then defined as
Quantum Field Theory II - 页 3 2f27b6c076adb3d39c6d17a11b9f9fe2
For f and g in L2, this integral exists because of the Cauchy–Schwarz inequality, and defines an inner product on the space. Equipped with this inner product, L2 is in fact complete.[20] The Lebesgue integral is essential to ensure completeness: on domains of real numbers, for instance, not enough functions are Riemann integrable.[21]
The Lebesgue spaces appear in many natural settings. The spaces L2(R) and L2([0,1]) of square-integrable functions with respect to the Lebesgue measure on the real line and unit interval, respectively, are natural domains on which to define the Fourier transform and Fourier series. In other situations, the measure may be something other than the ordinary Lebesgue measure on the real line. For instance, if w is any positive measurable function, the space of all measurable functions f on the interval [0, 1] satisfying
Quantum Field Theory II - 页 3 A77a589d071d49cfa7d445158eb93b9d
is called the weighted L2 space L2
w
([0,1]), and w is called the weight function. The inner product is defined by
Quantum Field Theory II - 页 3 7be183b1a8018b74e4d03eacb486fe7f
The weighted space L2
w
([0,1]) is identical with the Hilbert space L2([0,1],μ) where the measure μ of a Lebesgue-measurable set A is defined by
Quantum Field Theory II - 页 3 7245a822202f9905de6a9e628a36d26d
Weighted L2 spaces like this are frequently used to study orthogonal polynomials, because different families of orthogonal polynomials are orthogonal with respect to different weighting functions.

Sobolev spaces[edit]

Sobolev spaces, denoted by Hs or W s, 2, are Hilbert spaces. These are a special kind of function space in which differentiation may be performed, but that (unlike other Banach spaces such as the Hölder spaces) support the structure of an inner product. Because differentiation is permitted, Sobolev spaces are a convenient setting for the theory of partial differential equations.[22] They also form the basis of the theory of direct methods in the calculus of variations.[23]
For s a non-negative integer and Ω ⊂ Rn, the Sobolev space Hs(Ω) contains L2 functions whose weak derivatives of order up to s are also L2. The inner product in Hs(Ω) is
Quantum Field Theory II - 页 3 De5fd8835da968fbc99021c5dc161d55
where the dot indicates the dot product in the Euclidean space of partial derivatives of each order. Sobolev spaces can also be defined when s is not an integer.
Sobolev spaces are also studied from the point of view of spectral theory, relying more specifically on the Hilbert space structure. If Ω is a suitable domain, then one can define the Sobolev space Hs(Ω) as the space of Bessel potentials;[24] roughly,
Quantum Field Theory II - 页 3 2fff4acbf01e2ce017959b386e415e62
Here Δ is the Laplacian and (1 − Δ)s/2 is understood in terms of the spectral mapping theorem. Apart from providing a workable definition of Sobolev spaces for non-integer s, this definition also has particularly desirable properties under the Fourier transform that make it ideal for the study of pseudodifferential operators. Using these methods on a compactRiemannian manifold, one can obtain for instance the Hodge decomposition, which is the basis of Hodge theory.[25]

Spaces of holomorphic functions[edit]

Hardy spaces
The Hardy spaces are function spaces, arising in complex analysis and harmonic analysis, whose elements are certain holomorphic functions in a complex domain.[26] Let Udenote the unit disc in the complex plane. Then the Hardy space H2(U) is defined as the space of holomorphic functions f on U such that the means
Quantum Field Theory II - 页 3 3c414aaa40577fc01ecb05bb5f8b529c
remain bounded for r < 1. The norm on this Hardy space is defined by
Quantum Field Theory II - 页 3 6eaf87c6e4534b63996dd92907e4987c
Hardy spaces in the disc are related to Fourier series. A function f is in H2(U) if and only if
Quantum Field Theory II - 页 3 1402ac96473c1d81ec78a5f38e1a810c
where
Quantum Field Theory II - 页 3 58f4aa69cc220f7e3db61e08221ff5e7
Thus H2(U) consists of those functions that are L2 on the circle, and whose negative frequency Fourier coefficients vanish.
Bergman spaces
The Bergman spaces are another family of Hilbert spaces of holomorphic functions.[27] Let D be a bounded open set in the complex plane (or a higher-dimensional complex space) and let L2,h(D) be the space of holomorphic functions f in D that are also in L2(D) in the sense that
Quantum Field Theory II - 页 3 5a5ca718aee41a308b94a306d4de9be9
where the integral is taken with respect to the Lebesgue measure in D. Clearly L2, h(D) is a subspace of L2(D); in fact, it is a closed subspace, and so a Hilbert space in its own right. This is a consequence of the estimate, valid on compact subsets K of D, that
Quantum Field Theory II - 页 3 F316367e648e92b3771de73ef4b7b929
which in turn follows from Cauchy's integral formula. Thus convergence of a sequence of holomorphic functions in L2(D) implies also compact convergence, and so the limit function is also holomorphic. Another consequence of this inequality is that the linear functional that evaluates a function f at a point of D is actually continuous on L2,h(D). The Riesz representation theorem implies that the evaluation functional can be represented as an element of L2,h(D). Thus, for every z ∈ D, there is a function ηz ∈ L2,h(D) such that
Quantum Field Theory II - 页 3 Fd6104755f2c3c7c4375d445b46543e0
for all f ∈ L2,h(D). The integrand
Quantum Field Theory II - 页 3 9e507dd0eb4494178a193175a03e7800
is known as the Bergman kernel of D. This integral kernel satisfies a reproducing property
Quantum Field Theory II - 页 3 F2ded3f4beb54a2c90310a0c84467c71
A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ,z) that verifies a reproducing property analogous to this one. The Hardy space H2(D) also admits a reproducing kernel, known as the Szegő kernel.[28] Reproducing kernels are common in other areas of mathematics as well. For instance, in harmonic analysis the Poisson kernel is a reproducing kernel for the Hilbert space of square-integrable harmonic functions in the unit ball. That the latter is a Hilbert space at all is a consequence of the mean value theorem for harmonic functions.

Applications[edit]

Many of the applications of Hilbert spaces exploit the fact that Hilbert spaces support generalizations of simple geometric concepts like projection and change of basis from their usual finite dimensional setting. In particular, the spectral theory of continuous self-adjoint linear operators on a Hilbert space generalizes the usual spectral decomposition of amatrix, and this often plays a major role in applications of the theory to other areas of mathematics and physics.

Sturm–Liouville theory[edit]

Main articles: Sturm–Liouville theory and Spectral theory of ordinary differential equations
[/ltr][/size]
Quantum Field Theory II - 页 3 220px-Harmonic_partials_on_strings.svg

The overtones of a vibrating string. These are eigenfunctions of an associated Sturm–Liouville problem. The eigenvalues 1,1/2,1/3,… form the (musical) harmonic series.
[size][ltr]
In the theory of ordinary differential equations, spectral methods on a suitable Hilbert space are used to study the behavior of eigenvalues and eigenfunctions of differential equations. For example, the Sturm–Liouville problem arises in the study of the harmonics of waves in a violin string or a drum, and is a central problem in ordinary differential equations.[29] The problem is a differential equation of the form
Quantum Field Theory II - 页 3 46843bd5250780c5b80f9ce7cedb4a94
for an unknown function y on an interval [a,b], satisfying general homogeneous Robin boundary conditions
Quantum Field Theory II - 页 3 493fb78a8e39e4b4b391780563d4a57b
The functions pq, and w are given in advance, and the problem is to find the function y and constants λ for which the equation has a solution. The problem only has solutions for certain values of λ, called eigenvalues of the system, and this is a consequence of the spectral theorem for compact operators applied to the integral operator defined by the Green's function for the system. Furthermore, another consequence of this general result is that the eigenvalues λ of the system can be arranged in an increasing sequence tending to infinity.[30]

Partial differential equations[edit]

Hilbert spaces form a basic tool in the study of partial differential equations.[22] For many classes of partial differential equations, such as linear elliptic equations, it is possible to consider a generalized solution (known as a weak solution) by enlarging the class of functions. Many weak formulations involve the class of Sobolev functions, which is a Hilbert space. A suitable weak formulation reduces to a geometrical problem the analytic problem of finding a solution or, often what is more important, showing that a solution exists and is unique for given boundary data. For linear elliptic equations, one geometrical result that ensures unique solvability for a large class of problems is the Lax–Milgram theorem. This strategy forms the rudiment of the Galerkin method (a finite element method) for numerical solution of partial differential equations.[31]
A typical example is the Poisson equation −Δu = g with Dirichlet boundary conditions in a bounded domain Ω in R2. The weak formulation consists of finding a function u such that, for all continuously differentiable functions v in Ω vanishing on the boundary:
Quantum Field Theory II - 页 3 C9a9e918ab8a8ff349fb12ed7710fca5
This can be recast in terms of the Hilbert space H1
0
(Ω) consisting of functions u such that u, along with its weak partial derivatives, are square integrable on Ω, and vanish on the boundary. The question then reduces to finding u in this space such that for all v in this space
Quantum Field Theory II - 页 3 Bdf71f086fa83928273600fd4adb2a08
where a is a continuous bilinear form, and b is a continuous linear functional, given respectively by
Quantum Field Theory II - 页 3 0e4daa61ac97a0f546ac9e0394b2fc1f
Since the Poisson equation is elliptic, it follows from Poincaré's inequality that the bilinear form a is coercive. The Lax–Milgram theorem then ensures the existence and uniqueness of solutions of this equation.
Hilbert spaces allow for many elliptic partial differential equations to be formulated in a similar way, and the Lax–Milgram theorem is then a basic tool in their analysis. With suitable modifications, similar techniques can be applied to parabolic partial differential equations and certain hyperbolic partial differential equations.

Ergodic theory[edit]

[/ltr][/size]
Quantum Field Theory II - 页 3 220px-BunimovichStadium.svg

The path of a billiard ball in theBunimovich stadium is described by an ergodic dynamical system.
[size][ltr]
The field of ergodic theory is the study of the long-term behavior of chaotic dynamical systems. The protypical case of a field that ergodic theory applies to is thermodynamics, in which—though the microscopic state of a system is extremely complicated (it is impossible to understand the ensemble of individual collisions between particles of matter)—the average behavior over sufficiently long time intervals is tractable. The laws of thermodynamics are assertions about such average behavior. In particular, one formulation of the zeroth law of thermodynamics asserts that over sufficiently long timescales, the only functionally independent measurement that one can make of a thermodynamic system in equilibrium is its total energy, in the form of temperature.
An ergodic dynamical system is one for which, apart from the energy—measured by the Hamiltonian—there are no other functionally independent conserved quantities on the phase space. More explicitly, suppose that the energy E is fixed, and let ΩE be the subset of the phase space consisting of all states of energy E (an energy su***ce), and let Tt denote the evolution operator on the phase space. The dynamical system is ergodic if there are no continuous non-constant functions on ΩE such that
Quantum Field Theory II - 页 3 Cdabbe879305cb415abcca7f8302e53a
for all w on ΩE and all time tLiouville's theorem implies that there exists a measure μ on the energy su***ce that is invariant under the time translation. As a result, time translation is a unitary transformation of the Hilbert space L2E,μ) consisting of square-integrable functions on the energy su***ce ΩE with respect to the inner product
Quantum Field Theory II - 页 3 787e510e6299fa358bb8729584d6bd44
The von Neumann mean ergodic theorem[19] states the following:
[/ltr][/size]

  • If Ut is a (strongly continuous) one-parameter semigroup of unitary operators on a Hilbert space H, and P is the orthogonal projection onto the space of common fixed points ofUt, {xH | Utx = x for all t > 0}, then

[size][ltr]
Quantum Field Theory II - 页 3 1ac719cfa07467081f28c184effbb954
For an ergodic system, the fixed set of the time evolution consists only of the constant functions, so the ergodic theorem implies the following:[32] for any function f ∈ L2E,μ),
Quantum Field Theory II - 页 3 7681692c7a916c6be28506f5f6f5ebf7
That is, the long time average of an observable f is equal to its expectation value over an energy su***ce.[/ltr][/size]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

3页/共4 上一页  1, 2, 3, 4  下一步

返回页首


 
您在这个论坛的权限:
不能在这个论坛回复主题