律证论坛
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Quantum Field Theory II

2页/共4 上一页  1, 2, 3, 4  下一步

向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:06

Integrable system

From Wikipedia, the free encyclopedia




[ltr]In mathematics and physics, there are various distinct notions that are referred to under the name of integrable systems.
In the general theory of differential systems, there is Frobenius integrability, which refers to overdetermined systems. In the classical theory of Hamiltonian dynamical systems, there is the notion of Liouville integrability. More generally, in differentiable dynamical systems integrability relates to the existence of foliations by invariant submanifolds within the phase space. Each of these notions involves an application of the idea of foliations, but they do not coincide. There are also notions ofcomplete integrability, or exact solvability in the setting of quantum systems and statistical mechanical models. Integrability can often be traced back to the algebraic geometry of differential operators.[/ltr]



[ltr]Contents
  [hide[/ltr]




[ltr]

Frobenius integrability (overdetermined differential systems)[edit]
A differential system is said to be completely integrable in the Frobeniussense if the space on which it is defined has a foliation by maximal integral manifolds. The Frobenius theorem states that a system is completely integrable if and only if it generates an ideal that is closed under exterior differentiation. (See the article on integrability conditions for differential systems for a detailed discussion of foliations by maximal integral manifolds.)
General dynamical systems[edit]
In the context of differentiable dynamical systems, the notion ofintegrability refers to the existence of invariant, regular foliations; i.e., ones whose leaves are embedded submanifolds of the smallest possible dimension that are invariant under the flow. There is thus a variable notion of the degree of integrability, depending on the dimension of the leaves of the invariant foliation. This concept has a refinement in the case ofHamiltonian systems, known as complete integrability in the sense ofLiouville (see below), which is what is most frequently referred to in this context.
An extension of the notion of integrability is also applicable to discrete systems such as lattices. This definition can be adapted to describeevolution equations that either are systems of differential equations orfinite difference equations.
The distinction between integrable and nonintegrable dynamical systems thus has the qualitative implication of regular motion vs. chaotic motionand hence is an intrinsic property, not just a matter of whether a system can be explicitly integrated in exact form.
Hamiltonian systems and Liouville integrability[edit]
In the special setting of Hamiltonian systems, we have the notion of integrability in the Liouville sense. Liouville integrability means that there exists a regular foliation of the phase space by invariant manifolds such that the Hamiltonian vector fields associated to the invariants of the foliation span the tangent distribution. Another way to state this is that there exists a maximal set of Poisson commuting invariants (i.e., functions on the phase space whose Poisson brackets with the Hamiltonian of the system, and with each other, vanish).
In finite dimensions, if the phase space is symplectic (i.e., the center of the Poisson algebra consists only of constants), then it must have even dimension Quantum Field Theory II - 页 2 21e2c0c0472b331622877accbe29b91b, and the maximal number of independent Poisson commuting invariants (including the Hamiltonian itself) is Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1. The leaves of the foliation are totally isotropic with respect to the symplectic form and such a maximal isotropic foliation is called Lagrangian. All autonomousHamiltonian systems (i.e. those for which the Hamiltonian and Poisson brackets are not explicitly time dependent) have at least one invariant; namely, the Hamiltonian itself, whose value along the flow is the energy. If the energy level sets are compact, the leaves of the Lagrangian foliation are tori, and the natural linear coordinates on these are called "angle" variables. The cycles of the canonical Quantum Field Theory II - 页 2 C4ca4238a0b923820dcc509a6f75849b-form are called the actionvariables, and the resulting canonical coordinates are called action-angle variables (see below).
There is also a distinction between complete integrability, in theLiouville sense, and partial integrability, as well as a notion ofsuperintegrability and maximal superintegrability. Essentially, these distinctions correspond to the dimensions of the leaves of the foliation. When the number of independent Poisson commuting invariants is less than maximal (but, in the case of autonomous systems, more than one), we say the system is partially integrable. When there exist further functionally independent invariants, beyond the maximal number that can be Poisson commuting, and hence the dimension of the leaves of the invariant foliation is less than n, we say the system is superintegrable. If there is a regular foliation with one-dimensional leaves (curves), this is called maximally superintegrable.
Action-angle variables[edit]
When a finite-dimensional Hamiltonian system is completely integrable in the Liouville sense, and the energy level sets are compact, the flows are complete, and the leaves of the invariant foliation are tori. There then exist, as mentioned above, special sets of canonical coordinates on thephase space known as action-angle variables, such that the invariant tori are the joint level sets of the action variables. These thus provide a complete set of invariants of the Hamiltonian flow (constants of motion), and the angle variables are the natural periodic coordinates on the torus. The motion on the invariant tori, expressed in terms of these canonical coordinates, is linear in the angle variables.
The Hamilton–Jacobi approach[edit]
In canonical transformation theory, there is the Hamilton–Jacobi method, in which solutions to Hamilton's equations are sought by first finding acomplete solution of the associated Hamilton–Jacobi equation. In classical terminology, this is described as determining a transformation to a canonical set of coordinates consisting of completely ignorable variables; i.e., those in which there is no dependence of the Hamiltonian on a complete set of canonical "position" coordinates, and hence the corresponding canonically conjugate momenta are all conserved quantities. In the case of compact energy level sets, this is the first step towards determining the action-angle variables. In the general theory of partial differential equations of Hamilton–Jacobi type, a complete solution (i.e. one that depends on n independent constants of integration, where n is the dimension of the configuration space), exists in very general cases, but only in the local sense. Therefore the existence of a complete solution of the Hamilton–Jacobi equation is by no means a characterization of complete integrability in the Liouville sense. Most cases that can be "explicitly integrated" involve a complete separation of variables, in which the separation constants provide the complete set of integration constants that are required. Only when these constants can be reinterpreted, within the full phase space setting, as the values of a complete set of Poisson commuting functions restricted to the leaves of a Lagrangian foliation, can the system be regarded as completely integrable in the Liouville sense.
Solitons and inverse spectral methods[edit]
A resurgence of interest in classical integrable systems came with the discovery, in the late 1960s, that solitons, which are strongly stable, localized solutions of partial differential equations like the Korteweg–de Vries equation (which describes 1-dimensional non-dissipative fluid dynamics in shallow basins), could be understood by viewing these equations as infinite-dimensional integrable Hamiltonian systems. Their study leads to a very fruitful approach for "integrating" such systems, theinverse scattering transform and more general inverse spectral methods (often reducible to Riemann–Hilbert problems), which generalize local linear methods like Fourier analysis to nonlocal linearization, through the solution of associated integral equations.
The basic idea of this method is to introduce a linear operator that is determined by the position in phase space and which evolves under the dynamics of the system in question in such a way that its "spectrum" (in a suitably generalized sense) is invariant under the evolution. This provides, in certain cases, enough invariants, or "integrals of motion" to make the system completely integrable. In the case of systems having an infinite number of degrees of freedom, such as the KdV equation, this is not sufficient to make precise the property of Liouville integrability. However, for suitably defined boundary conditions, the spectral transform can, in fact, be interpreted as a transformation to completely ignorable coordinates, in which the conserved quantities form half of a doubly infinite set of canonical coordinates, and the flow linearizes in these. In some cases, this may even be seen as a transformation to action-angle variables, although typically only a finite number of the "position" variables are actually angle coordinates, and the rest are noncompact.
Quantum integrable systems[edit]
There is also a notion of quantum integrable systems. In the quantum setting, functions on phase space must be replaced by self-adjoint operators on a Hilbert space, and the notion of Poisson commuting functions replaced by commuting operators.
To explain quantum integrability, it is helpful to consider the free particle setting. Here all dynamics are one-body reducible. A quantum system is said to be integrable if the dynamics are two-body irreducible. The Yang-Baxter equation is a consequence of this reducibility and leads to trace identities which provide an infinite set of conserved quantities. All of these ideas are incorporated into the Quantum inverse scattering method where the algebraic Bethe Ansatz can be used to obtain explicit solutions. Examples of quantum integrable models are the Lieb-Liniger Model, theHubbard model and several variations on the Heisenberg model[1]
Exactly solvable models[edit]
In physics, completely integrable systems, especially in the infinite-dimensional setting, are often referred to as exactly solvable models. This obscures the distinction between integrability in the Hamiltonian sense, and the more general dynamical systems sense.
There are also exactly solvable models in statistical mechanics, which are more closely related to quantum integrable systems than classical ones. Two closely related methods: the Bethe ansatz approach, in its modern sense, based on the Yang–Baxter equations and the quantum inverse scattering method provide quantum analogs of the inverse spectral methods. These are equally important in the study of solvable models in statistical mechanics.
An imprecise notion of "exact solvability" as meaning: "The solutions can be expressed explicitly in terms of some previously known functions" is also sometimes used, as though this were an intrinsic property of the system itself, rather than the purely calculational feature that we happen to have some "known" functions available, in terms of which the solutions may be expressed. This notion has no intrinsic meaning, since what is meant by "known" functions very often is defined precisely by the fact that they satisfy certain given equations, and the list of such "known functions" is constantly growing. Although such a characterization of "integrability" has no intrinsic validity, it often implies the sort of regularity that is to be expected in integrable systems.
List of some well-known classical integrable systems[edit]
1. Classical mechanical systems (finite-dimensional phase space):[/ltr]



[ltr]
2. Integrable lattice models[/ltr]



[ltr]
3. Integrable systems of PDEs in 1 + 1 dimension[/ltr]



[ltr]
4. Integrable PDEs in 2 + 1 dimensions[/ltr]



[ltr]
5. Other integrable systems of PDEs in higher dimensions[/ltr]



[ltr]
Notes[edit][/ltr]


  1. Jump up^ V.E. Korepin, N. M. Bogoliubov, A. G. Izergin (1997). Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press.ISBN 978-0-521-58646-7.


[ltr]
References[edit][/ltr]



[ltr]
External links[edit][/ltr]





Conformal field theory

From Wikipedia, the free encyclopedia


[ltr]A conformal field theory (CFT) is a quantum field theory, also recognized as a model of statistical mechanics at a thermodynamic critical point, that is invariant under conformal transformations. Conformal field theory is often studied in two dimensions where there is an infinite-dimensional group of local conformal transformations, described by theholomorphic functions.
Conformal field theory has important applications in string theory,statistical mechanics, and condensed matter physics.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Scale invariance vs. conformal invariance[edit]
While it is possible for a quantum field theory to be scale invariant but not conformally-invariant, examples are rare.[1] For this reason, the terms are often used interchangeably in the context of quantum field theory, even though the scale symmetry is larger.
In some particular cases it is possible to prove that scale invariance implies conformal invariance in a quantum field theory, for example in unitarycompact conformal field theories in two dimensions.
Dimensional considerations[edit]
Two dimensions[edit]
There are two versions of 2D CFT: 1) Euclidean, and 2) Lorentzian. The former applies to statistical mechanics, and the latter to quantum field theory. The two versions are related by a Wick rotation.
Two-dimensional CFTs are (in some way) invariant under an infinite-dimensional symmetry group. For example, consider a CFT on theRiemann sphere. It has the Möbius transformations as the conformal group, which is isomorphic to (the finite-dimensional) PSL(2,C). However, the infinitesimal conformal transformations form an infinite-dimensional algebra, called the Witt algebra and only the primary fields (or chiral fields) are invariant with respect to the full infinitesimal conformal group.
In most conformal field theories, a conformal anomaly, also known as aWeyl anomaly, arises in the quantum theory. This results in the appearance of a nontrivial central charge, and the Witt algebra is modified to become the Virasoro algebra.
In Euclidean CFT, we have a holomorphic and an antiholomorphic copy of the Virasoro algebra. In Lorentzian CFT, we have a left-moving and a right moving copy of the Virasoro algebra (spacetime is a cylinder, with space being a circle, and time a line).
This symmetry makes it possible to classify two-dimensional CFTs much more precisely than in higher dimensions. In particular, it is possible to relate the spectrum of primary operators in a theory to the value of thecentral charge, c. The Hilbert space of physical states is a unitary moduleof the Virasoro algebra corresponding to a fixed value of c. Stability requires that the energy spectrum of the Hamiltonian be nonnegative. The modules of interest are the highest weight modules of the Virasoro algebra.
A chiral field is a holomorphic field W(z) which transforms as
Quantum Field Theory II - 页 2 9436367b86fa68515d2f8a9020732aec
and
Quantum Field Theory II - 页 2 54e800d33e79878a701147ee577758cb
Similarly for an antichiral field. Δ is the conformal weight of the chiral fieldW.
Furthermore, it was shown by Alexander Zamolodchikov that there exists a function, C, which decreases monotonically under the renormalization group flow of a two-dimensional quantum field theory, and is equal to the central charge for a two-dimensional conformal field theory. This is known as the Zamolodchikov C-theorem, and tells us that renormalization group flow in two dimensions is irreversible.
Frequently, we are not just interested in the operators, but we are also interested in the vacuum state, or in statistical mechanics, the thermal state. Unless c=0, there can't possibly be any state which leaves the entire infinite dimensional conformal symmetry unbroken. The best we can come up with is a state which is invariant under L-1, L0, L1, LiQuantum Field Theory II - 页 2 D4225df29ee5efd68caf20614f27c22f. This contains the Möbius subgroup. The rest of the conformal group is spontaneously broken.
Two-dimensional conformal field theories play an important role in statistical mechanics, where they describe critical points of many lattice models.
More than two dimensions[edit]
In d > 2 dimensions, the conformal group is isomorphic to SO(d+1, 1 ) in Euclidean signature, or SO(d, 2 ) in Minkowski space.
Higher-dimensional conformal field theories are prominent in the AdS/CFT correspondence, in which a gravitational theory in anti-de Sitter space(AdS) is equivalent to a conformal field theory on the AdS boundary. Notable examples are d=4 N = 4 supersymmetric Yang–Mills theory, which is dual to Type IIB string theory on AdS5 x S5, and d=3 N=6 super-Chern–Simons theory, which is dual to M-theory on AdS4 x S7. (The prefix "super" denotes supersymmetry, N denotes the degree of extended supersymmetry possessed by the theory, and d the number of space-time dimensions on the boundary.)
Conformal symmetry[edit]
Conformal symmetry is a symmetry under scale invariance and under the special conformal transformations having the following relations.
Quantum Field Theory II - 页 2 71e21748d1a597343fe94c978123794bQuantum Field Theory II - 页 2 231d3807fe9cdd8ef19c4a5714b00e6fQuantum Field Theory II - 页 2 C7f16d19f2d53a0f0599e8aa1807d567Quantum Field Theory II - 页 2 3920c360361070a072b959975c70c735Quantum Field Theory II - 页 2 Ca70e8c528de19d953fdf24a581f7e27
where Quantum Field Theory II - 页 2 44c29edb103a2872f519ad0c9a0fdaaa generates translationsQuantum Field Theory II - 页 2 F623e75af30e62bbd73d6df5b50bb7b5 generates scaling transformations as a scalar and Quantum Field Theory II - 页 2 Cf84bd19e7b5454d2a927f076bf73422 generates the special conformal transformations as acovariant vector under Lorentz transformation.
See also[edit]
[/ltr][/size]
[size][ltr]
References[edit]
[/ltr][/size]

  1. Jump up^ One physical example is the theory of elasticity in two and three dimensions (also known as the theory of a vector field without gauge invariance). See Riva V, Cardy J (2005). "Scale and conformal invariance in field theory: a physical counterexample". Phys. Lett. B 622: 339–342.arXiv:hep-th/0504197Bibcode:2005PhLB..622..339R.doi:10.1016/j.physletb.2005.07.010.

[size][ltr]
Further reading[edit]
[/ltr][/size]


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:14

Affine Lie algebra

From Wikipedia, the free encyclopedia




[ltr]In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which thegeneralized Cartan matrix is positive semi-definite and has corank 1. From purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
Affine Lie algebras play an important role in string theory and conformal field theory due to the way they are constructed: starting from a simple Lie algebra Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b, one considers the loop algebraQuantum Field Theory II - 页 2 Dbfce35d49855c338d32df8f180f5a02, formed by the Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra Quantum Field Theory II - 页 2 D26fbc649fea0ca9488b9cddb75cb7ed is obtained by adding one extra dimension to the loop algebra and modifying a commutator in a non-trivial way, which physicists call a quantum anomaly and mathematicians acentral extension. More generally, if σ is an automorphism of the simple Lie algebra Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b associated to an automorphism of its Dynkin diagram, thetwisted loop algebra Quantum Field Theory II - 页 2 4615b0e4b6efa982db79280e045deaf3 consists of Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-valued functions f on the real line which satisfy the twisted periodicity condition f(x+2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.[/ltr]



[ltr]Contents
  [hide[/ltr]




[ltr]

Affine Lie algebras from simple Lie algebras[edit]
Definition[edit]
If Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b is a finite dimensional simple Lie algebra, the corresponding affine Lie algebra Quantum Field Theory II - 页 2 D26fbc649fea0ca9488b9cddb75cb7ed is constructed as a central extension of the infinite-dimensional Lie algebra Quantum Field Theory II - 页 2 67052b325a48cb658910b69c2798a51b, with one-dimensional center Quantum Field Theory II - 页 2 1e4f484d363f5c08b8941649b9e3121e As a vector space,
Quantum Field Theory II - 页 2 D1f9b60c4109316b0540bddcbc4157e4
where Quantum Field Theory II - 页 2 B80e6ee1e62411678f691ec7153895c8 is the complex vector space of Laurent polynomials in the indeterminate t. The Lie bracket is defined by the formula
Quantum Field Theory II - 页 2 2c4ef03690bd40f35c3560e51f6bc5ee
for all Quantum Field Theory II - 页 2 7b0d9eefc99f248fa6d96c3d7e107a19 and Quantum Field Theory II - 页 2 06f2ccd9379632efd890d0e711b006c4, where Quantum Field Theory II - 页 2 2c3d331bc98b44e71cb2aae9edadca7e is the Lie bracket in the Lie algebra Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b and Quantum Field Theory II - 页 2 6f5b0f39ab1f308f9a500bdece50367e is the Cartan-Killing form on Quantum Field Theory II - 页 2 3b0683ecb205397278d8dd44b09a2ebf
The affine Lie algebra corresponding to a finite-dimensional semisimple Lie algebra is the direct sum of the affine Lie algebras corresponding to its simple summands. There is a distinguished derivation of the affine Lie algebra defined by
Quantum Field Theory II - 页 2 C2b8d900202e46c2208dbda5c6702d7a
The corresponding affine Kac-Moody algebra is defined by adding an extra generator d satisfying [d,A] = δ(A) (a semidirect product).
Constructing the Dynkin diagrams[edit]
The Dynkin diagram of each affine Lie algebra consists of that of the corresponding simple Lie algebra plus an additional node, which corresponds to the addition of an imaginary root. Of course, such a node cannot be attached to the Dynkin diagram in just any location, but for each simple Lie algebra there exists a number of possible attachments equal to the cardinality of the group of outer automorphisms of the Lie algebra. In particular, this group always contains the identity element, and the corresponding affine Lie algebra is called an untwisted affine Lie algebra. When the simple algebra admits automorphisms that are not inner automorphisms, one may obtain other Dynkin diagrams and these correspond to twisted affine Lie algebras.[/ltr]
Dynkin diagrams for affine Lie algebras
Quantum Field Theory II - 页 2 360px-Affine_Dynkin_diagrams
The set of extended (untwisted) affine Dynkin diagrams, with added nodes in green
Quantum Field Theory II - 页 2 300px-Twisted_affine_Dynkin_diagrams
"Twisted" affine forms are named with (2) or (3) superscripts.
(k is the number of nodes in the graph)
[ltr]
Classifying the central extensions[edit]
The attachment of an extra node to the Dynkin diagram of the corresponding simple Lie algebra corresponds to the following construction. An affine Lie algebra can always be constructed as a central extension of the loop algebra of the corresponding simple Lie algebra. If one wishes to begin instead with a semisimple Lie algebra, then one needs to centrally extend by a number of elements equal to the number of simple components of the semisimple algebra. In physics, one often considers instead the direct sum of a semisimple algebra and an abelian algebra Quantum Field Theory II - 页 2 486df4caa0484bc404da57f8058a0ee1. In this case one also needs to add n further central elements for the nabelian generators.
The second integral cohomology of the loop group of the corresponding simple compact Lie group is isomorphic to the integers. Central extensions of the affine Lie group by a single generator are topologically circle bundles over this free loop group, which are classified by a two-class known as the first Chern class of the fibration. Therefore the central extensions of an affine Lie group are classified by a single parameter kwhich is called the level in the physics literature, where it first appeared. Unitary highest weight representations of the affine compact groups only exist when k is a natural number. More generally, if one considers a semi-simple algebra, there is a central charge for each simple component.
Applications[edit]
They appear naturally in theoretical physics (for example, in conformal field theories such as the WZW model and coset models and even on the worldsheet of the heterotic string), geometry, and elsewhere in mathematics.
References[edit][/ltr]


  • Di Francesco, P.; Mathieu, P.; Sénéchal, D. (1997), Conformal Field Theory, Springer-Verlag, ISBN 0-387-94785-X
  • Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X
  • Goddard, Peter; Olive, David (1988), Kac-Moody and Virasoro algebras: A Reprint Volume for Physicists, Advanced Series in Mathematical Physics 3, World Scientific, ISBN 9971-5-0419-7
  • Kac, Victor (1990), Infinite dimensional Lie algebras (3 ed.), Cambridge University Press, ISBN 0-521-46693-8
  • Kohno, To***ake (1998), Conformal Field Theory and Topology, American Mathematical Society, ISBN 0-8218-2130-X
  • Pressley, Andrew; Segal, Graeme (1986), Loop groups, Oxford University Press, ISBN 0-19-853535-X




Verma module

From Wikipedia, the free encyclopedia


[ltr]Verma modules, named after Daya-Nand Verma, are objects in therepresentation theory of Lie algebras, a branch of mathematics.
Verma modules can be used to prove that an irreducible highest weight module with highest weight Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 is finite-dimensional, if and only if the weight Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Definition of Verma modules[edit]
The definition relies on a stack of relatively dense notation. Let Quantum Field Theory II - 页 2 800618943025315f869e4e1f09471012 be a field and denote the following:
[/ltr][/size]
[size][ltr]
To define the Verma module, we begin by defining some other modules:
[/ltr][/size]

  • Quantum Field Theory II - 页 2 B9849d2816ee7b61f07e9f98645f7a8d, the one-dimensional Quantum Field Theory II - 页 2 800618943025315f869e4e1f09471012-vector space (i.e. whose underlying set is Quantum Field Theory II - 页 2 800618943025315f869e4e1f09471012 itself) together with a Quantum Field Theory II - 页 2 43aac52268f1de093871f0d36deea0f2-module structure such that Quantum Field Theory II - 页 2 8bfcd2b833001a401f25621ff9ba0d8b acts as multiplication by Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 and the positive root spaces act trivially. As Quantum Field Theory II - 页 2 B9849d2816ee7b61f07e9f98645f7a8d is a left Quantum Field Theory II - 页 2 43aac52268f1de093871f0d36deea0f2-module, it is consequently a left Quantum Field Theory II - 页 2 C141b0cf4f70d2943e0d63c458ed1eab-module.
  • Using the Poincaré–Birkhoff–Witt theorem, there is a natural right Quantum Field Theory II - 页 2 C141b0cf4f70d2943e0d63c458ed1eab-module structure on Quantum Field Theory II - 页 2 60b74c5587cbdb34e83be379b44c5603 by right multiplication of a subalgebra. Quantum Field Theory II - 页 2 60b74c5587cbdb34e83be379b44c5603 is naturally a left Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-module, and together with this structure, it is a Quantum Field Theory II - 页 2 3ec92a10d97dc57f23747b8ae2ff8b3b-bimodule.

[size][ltr]
Now we can define the Verma module (with respect to Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5) as
Quantum Field Theory II - 页 2 2d18e9be48762c4b137a97476bdbed70
which is naturally a left Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-module (i.e. a representation of Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b). The Poincaré–Birkhoff–Witt theorem implies that the underlying vector space ofQuantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb is isomorphic to
Quantum Field Theory II - 页 2 D29dbe91d479c456320fd95aab4a5b18
where Quantum Field Theory II - 页 2 088bb7d7aa3cacf4b4d143ffaadd7596 is the Lie subalgebra generated by the negative root spaces of Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b.
Basic properties[edit]
Verma modules, considered as Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-modules, are highest weight modules, i.e. they are generated by a highest weight vector. This highest weight vector is Quantum Field Theory II - 页 2 5acfc110774432508a31c326d0ae0b0b (the first Quantum Field Theory II - 页 2 C4ca4238a0b923820dcc509a6f75849b is the unit in Quantum Field Theory II - 页 2 60b74c5587cbdb34e83be379b44c5603 and the second is the unit in the field Quantum Field Theory II - 页 2 800618943025315f869e4e1f09471012, considered as the Quantum Field Theory II - 页 2 43aac52268f1de093871f0d36deea0f2-module Quantum Field Theory II - 页 2 B9849d2816ee7b61f07e9f98645f7a8d) and it has weight Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5.
Verma modules are weight modules, i.e. Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb is a direct sum of all itsweight spaces. Each weight space in Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb is finite-dimensional and the dimension of the Quantum Field Theory II - 页 2 B72bb92668acc30b4474caff40274044-weight space Quantum Field Theory II - 页 2 6e04f5f75e0f62adfb97f52b2a2c7d4f is the number of possibilities how to obtain Quantum Field Theory II - 页 2 10572861085dfdcbc7ee8729ed8ea4b8 as a sum of positive roots (this is closely related to the so-called Kostant partition function).
Verma modules have a very important property: If Quantum Field Theory II - 页 2 5206560a306a2e085a437fd258eb57ce is any representation generated by a highest weight vector of weight Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5, there is a surjective Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-homomorphism Quantum Field Theory II - 页 2 6cf7c1d11762935dc50adc0e6641e054 That is, all representations with highest weight Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 that are generated by the highest weight vector (so called highest weight modules) are quotients of Quantum Field Theory II - 页 2 91db6f8135d80ea9d668c500e183e763
Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb contains a unique maximal submodule, and its quotient is the unique (up to isomorphismirreducible representation with highest weight Quantum Field Theory II - 页 2 F8e65c62ee7794fba02b891038bf9059
The Verma module Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb itself is irreducible if and only if none of the coordinates of Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 in the basis of fundamental weights is from the set Quantum Field Theory II - 页 2 F8607aded8fe95476db33f9866972dae.
The Verma module Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb is called regular, if its highest weight λ is on the affine Weyl orbit of a dominant weight Quantum Field Theory II - 页 2 C0f0f81041938ac436c460d89e804e5c. In other word, there exist an element w of the Weyl group W such that
Quantum Field Theory II - 页 2 91ed565924af5690a5965609822b29d1
where Quantum Field Theory II - 页 2 36f8ae4c86b69d52d037a6802d91cc4a is the affine action of the Weyl group.
The Verma module Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb is called singular, if there is no dominant weight on the affine orbit of λ. In this case, there exists a weight Quantum Field Theory II - 页 2 C0f0f81041938ac436c460d89e804e5c so that Quantum Field Theory II - 页 2 C4f56f0e76af5405b6f8b4147ab17d7eis on the wall of the fundamental Weyl chamber (δ is the sum of allfundamental weights).
Homomorphisms of Verma modules[edit]
For any two weights Quantum Field Theory II - 页 2 Bfc614ecb333c0e088f5eca1429645bd a non-trivial homomorphism
Quantum Field Theory II - 页 2 9fe4b4e1458c9e0c191fffadc6789f13
may exist only if Quantum Field Theory II - 页 2 B72bb92668acc30b4474caff40274044 and Quantum Field Theory II - 页 2 E05a30d96800384dd38b22851322a6b5 are linked with an affine action of the Weyl groupQuantum Field Theory II - 页 2 61e9c06ea9a85a5088a499df6458d276 of the Lie algebra Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b. This follows easily from the Harish-Chandra theorem on infinitesimal central characters.
Each homomorphism of Verma modules is injective and the dimension
Quantum Field Theory II - 页 2 692458ce834baa42cdb9c19b5c6829ff
for any Quantum Field Theory II - 页 2 434630ff1eb25cb06af6d5cf110bc88d. So, there exists a nonzero Quantum Field Theory II - 页 2 9fe4b4e1458c9e0c191fffadc6789f13 if and only if Quantum Field Theory II - 页 2 6e04f5f75e0f62adfb97f52b2a2c7d4f isisomorphic to a (unique) submodule of Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb.
The full classification of Verma module homomorphisms was done by Bernstein-Gelfand-Gelfand[1] and Verma[2] and can be summed up in the following statement:
[/ltr][/size]
There exists a nonzero homomorphism Quantum Field Theory II - 页 2 9fe4b4e1458c9e0c191fffadc6789f13 if and only if there exists
a sequence of weights
Quantum Field Theory II - 页 2 68d9f31747bd3b184f6f25fed43532f6such that Quantum Field Theory II - 页 2 6be8cee7d3b066f69e433046caa61126 for some positive roots Quantum Field Theory II - 页 2 8eb9d6bdd30c828de0459007b6da5cb7 (and Quantum Field Theory II - 页 2 2f1539ff93e6d0ee8521836108cf626a is the corresponding root reflection and Quantum Field Theory II - 页 2 F10f03c9836c36537d2539196058bfa2 is the sum of all fundamental weights) and for each Quantum Field Theory II - 页 2 E8983d34d9c64cdbc49497ada8abb389 is a natural number (Quantum Field Theory II - 页 2 Cf55a3fa95501686c75df4031345d01a is the coroot associated to the root Quantum Field Theory II - 页 2 8eb9d6bdd30c828de0459007b6da5cb7).
[size][ltr]
If the Verma modules Quantum Field Theory II - 页 2 6e04f5f75e0f62adfb97f52b2a2c7d4f and Quantum Field Theory II - 页 2 D63a30c096b10e79f6f25e0186127fdb are regular, then there exists a uniquedominant weight Quantum Field Theory II - 页 2 C0f0f81041938ac436c460d89e804e5c and unique elements ww′ of the Weyl group W such that
PQuantum Field Theory II - 页 2 036f65a083f3f90857eff0eebcb98cf4
and
Quantum Field Theory II - 页 2 8adce908304c7c3fde94f424f06b0754
where Quantum Field Theory II - 页 2 36f8ae4c86b69d52d037a6802d91cc4a is the affine action of the Weyl group. If the weights are furtherintegral, then there exists a nonzero homomorphism
Quantum Field Theory II - 页 2 83c41bbfa1a2db79e7e2249131783b5f
if and only if
Quantum Field Theory II - 页 2 2e76073082cfae2555010f99e0e3dd04
in the Bruhat ordering of the Weyl group.
Jordan–Hölder series[edit]
Let
Quantum Field Theory II - 页 2 8a1e7f5f652c0bd1ef1f9fe3432eacf9
be a sequence of Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-modules so that the quotient B/A is irreducible withhighest weight μ. Then there exists a nonzero homomorphism Quantum Field Theory II - 页 2 83c41bbfa1a2db79e7e2249131783b5f.
An easy consequence of this is, that for any highest weight modules Quantum Field Theory II - 页 2 5c6d4d069accdb64f8bd7699950fc080 such that
Quantum Field Theory II - 页 2 Ddf21fa7c1bd258e7f2a546fff340a5d
there exists a nonzero homomorphism Quantum Field Theory II - 页 2 83c41bbfa1a2db79e7e2249131783b5f.
Bernstein–Gelfand–Gelfand resolution[edit]
Let Quantum Field Theory II - 页 2 594be42222dec981a6700a0ae19214b8 be a finite-dimensional irreducible representation of the Lie algebraQuantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b with highest weight λ. We know from the section about homomorphisms of Verma modules that there exists a homomorphism
Quantum Field Theory II - 页 2 898a821a22c666663a93060a94244dde
if and only if
Quantum Field Theory II - 页 2 2e76073082cfae2555010f99e0e3dd04
in the Bruhat ordering of the Weyl group. The following theorem describes a resolution of Quantum Field Theory II - 页 2 594be42222dec981a6700a0ae19214b8 in terms of Verma modules (it was proved byBernsteinGelfandGelfand in 1975[3]) :
[/ltr][/size]
There exists an exact sequence of Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b-homomorphisms
Quantum Field Theory II - 页 2 43035e7877036ec4a5009d501c68c123
where n is the length of the largest element of the Weyl group.
[size][ltr]
A similar resolution exists for generalized Verma modules as well. It is denoted shortly as the BGG resolution.
Recently, these resolutions were studied in special cases, because of their connections to invariant differential operators in a special type of Cartan geometry, the parabolic geometries. These are Cartan geometries modeled on the pair (GP) where G is a Lie group and P a parabolic subgroup).[4]
See also[edit]
[/ltr][/size]
[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Bernstein I.N., Gelfand I.M., Gelfand S.I., Structure of Representations that are generated by vectors of highest weight, Functional. Anal. Appl. 5 (1971)
  2. Jump up^ Verma N., Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968)
  3. Jump up^ Bernstein I. N., Gelfand I. M., Gelfand S. I., Differential Operators on the Base Affine Space and a Study of g-Modules, Lie Groups and Their Representations, I. M. Gelfand, Ed., Adam Hilger, London, 1975.
  4. Jump up^ For more information, see: Eastwood M., Variations on the de Rham complex, Notices Amer. Math. Soc, 1999 - ams.org. Calderbank D.M., Diemer T., Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, Arxiv preprint math.DG/0001158, 2000 - arxiv.org [1]. Cap A., Slovak J., Soucek V., Bernstein-Gelfand-Gelfand sequences, Arxiv preprint math.DG/0001164, 2000 - arxiv.org [2]

[size][ltr]
References[edit]
[/ltr][/size]
[size][ltr]
This article incorporates material from Verma module on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.[/ltr]
[/size]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:25

Operator product expansion

From Wikipedia, the free encyclopedia



[ltr]Contents
  [hide[/ltr]




[ltr]

2D Euclidean quantum field theory[edit]
In quantum field theory, the operator product expansion (OPE) is aLaurent series expansion of two operators. A Laurent series is a generalization of the Taylor series in that finitely many powers of the inverse of the expansion variable(s) are added to the Taylor series: pole(s) of finite order(s) are added to the series.
Heuristically, in quantum field theory one is interested in the result of physical observables represented by operators. If one wants to know the result of *** two physical observations at two points Quantum Field Theory II - 页 2 Fbade9e36a3f36d3d676c1b808451dd7 and Quantum Field Theory II - 页 2 F1290186a5d0b1ceab27f4e77c0c5d68, one can time order these operators in increasing time.
If one maps coordinates in a conformal manner, one is often interested in radial ordering. This is the analogue of time ordering where increasing time has been mapped to some increasing radius on the complex plane. One is also interested in normal ordering of creation operators.
A radial-ordered OPE can be written as a normal-ordered OPE minus the non-normal-ordered terms. The non-normal-ordered terms can often be written as a commutator, and these have useful simplifying identities. The radial ordering supplies the convergence of the expansion.
The result is a convergent expansion of the product of two operators in terms of some terms that have poles in the complex plane (the Laurent terms) and terms that are finite. This result represents the expansion of two operators at two different points as an expansion around just one point, where the poles represent where the two different points are the same point e.g.
Quantum Field Theory II - 页 2 85d6085f059537a372f8834946d34225.
Related to this is that an operator on the complex plane is in general written as a function of Quantum Field Theory II - 页 2 Fbade9e36a3f36d3d676c1b808451dd7 and Quantum Field Theory II - 页 2 Aeb40cbdb272a100ccde4a4581e6a7e4. These are referred to as the holomorphicand anti-holomorphic parts respectively, as they are continuous and differentiable except at the (finite number of) singularities. One should really call them meromorphic but holomorphic is common parlance. In general, the operator product expansion may not separate into holormorphic and anti-holomorphic parts, especially if there are Quantum Field Theory II - 页 2 1a1177a1d8ec7c65c09dc01365e8103dterms in the expansion. However, derivatives of the OPE can often separate the expansion into holomorphic and anti-holomorphic expansions. This expression is also an OPE and in general is more useful.
General[edit]
In quantum field theory, the operator product expansion (OPE) is aconvergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.
More precisely, if x and y are two different points, and A and B areoperator-valued fields, then there is an open neighborhood of y, O such that for all x in O/{y}
Quantum Field Theory II - 页 2 D35bac1e5c61b05430a520c57f2fdff7
where the sum is over finitely or countably many terms, Ci are operator-valued fields, ci are analytic functions over O/{y} and the sum is convergent in the operator topology within O/{y}.
OPEs are most often used in conformal field theory.
The notation Quantum Field Theory II - 页 2 4adcd34ecc142b7373cd6910a8dbbfb7 is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is anequivalence relation.
See also[edit][/ltr]



[ltr]
External links[edit][/ltr]





Product operator formalism

From Wikipedia, the free encyclopedia


[size][ltr]
In NMR spectroscopy, the product operator formalism is a method used to determine the outcome of pulse sequences in a rigorous but straightforward way. With this method it is possible to predict how the bulkmagnetization evolves with time under the action of pulses applied in different directions. It is a net improvement from the semi-classical vector model which is not able to predict many of the results in NMR spectroscopy and is a simplification of the complete density matrix formalism.
In this model, for a single spin, four base operators exist: Quantum Field Theory II - 页 2 86381f55dfe8fc80da7896a922e47d79Quantum Field Theory II - 页 2 7bc34df632cab84442d3a95bacc57117Quantum Field Theory II - 页 2 09fb5b6f31f84da0a25fb7e21ad643cf and Quantum Field Theory II - 页 2 E25d56fe2c7159dcbd009861760c169f which represent respectively polarization (population difference between the two spin states), single quantum coherence (magnetization on the xy plane) and the unit operator. Many other, non-classical operators exist for coupled systems. Using this approach, the evolution of the magnetization under free precession is represented by Quantum Field Theory II - 页 2 09fb5b6f31f84da0a25fb7e21ad643cf and corresponds to a rotation about the z-axis with a phase angle proportional to the chemical shift of the spin in question:
Quantum Field Theory II - 页 2 Bf6ea27115fc19222d986d0d85a24f80
Pulses about the x and y axis can be represented by Quantum Field Theory II - 页 2 86381f55dfe8fc80da7896a922e47d79 and Quantum Field Theory II - 页 2 7bc34df632cab84442d3a95bacc57117respectively; these allow to interconvert the magnetization between planes and ultimately to observe it at the end of a sequence. Since every spin will evolve differently depending on its shift, with this formalism it is possible to calculate exactly where the magnetization will end up and hence devise pulse sequences to measure the desired signal while excluding others.
The product operator formalism is particularly useful in describingexperiments in two-dimensions like COSY, HSQC and HMBC.
References[edit]
[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:27

Vertex operator algebra

From Wikipedia, the free encyclopedia
  (Redirected from Vertex algebras)

[th]String theory[/th][size][ltr]
In mathematics, avertex operator algebra (VOA) is an algebraic structure that plays an important role inconformal field theoryand string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such asmonstrous moonshineand the geometric Langlands correspondence.
The related notion ofvertex algebra was introduced by Richard Borcherds in 1986, motivated by a construction of an infinite-dimensional Lie algebra due toFrenkel. In the course of this construction, one employs a Fock space that admits an action of vertex operators attached to lattice vectors. Borcherds formulated the notion of vertex algebra by axiomatizing the relations between the lattice vertex operators, producing an algebraic structure that allows one to construct new Lie algebras by following Frenkel's method.
The notion of vertex operator algebra was introduced as a modification of the notion of vertex algebra, by Frenkel, Lepowsky, and Meurman in 1988, as part of their project to construct the moonshine module. They observed that many vertex algebras that appear in nature have a useful additional structure (an action of the Virasoro algebra), and satisfy a bounded-below property with respect to an energy operator. Motivated by this observation, they added the Virasoro action and bounded-below property as axioms.
We now have post-hoc motivation for these notions from physics, together with several interpretations of the axioms that were not initially known. Physically, the vertex operators arising from holomorphic field insertions at points (i.e., vertices) in two dimensional conformal field theory admitoperator product expansions when insertions collide, and these satisfy precisely the relations specified in the definition of vertex operator algebra. Indeed, the axioms of a vertex operator algebra are a formal algebraic interpretation of what physicists call chiral algebras, or "algebras of chiral symmetries", where these symmetries describe the Ward identities satisfied by a given conformal field theory, including conformal invariance. Other formulations of the vertex algebra axioms include Borcherds's later work on singular commutative rings, algebras over certain operads on curves introduced by Huang, Kriz, and others, and D-module-theoretic objects called chiral algebras introduced by Alexander Beilinson andVladimir Drinfeld. While related, these chiral algebras are not precisely the same as the objects with the same name that physicists use.
Important basic examples of vertex operator algebras include lattice VOAs (modeling lattice conformal field theories), VOAs given by representations of affine Kac–Moody algebras (from the WZW model), the Virasoro VOAs (i.e., VOAs corresponding to representations of the Virasoro algebra) and the moonshine module V, which is distinguished by its monster symmetry. More sophisticated examples such as affine W-algebras and the Chiral de Rham complex on a complex manifold arise in geometric representation theory and mathematical physics.

[/ltr][/size]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Formal definition[edit]
vertex algebra is the following data:
[/ltr][/size]

  • vector space V, called the space of states. The underlying field is typically taken to be the complex numbers, although Borcherds's original formulation allowed for an arbitrary commutative ring.
  • an identity element 1 ∈ V, sometimes written Quantum Field Theory II - 页 2 4964d23384c66fc9420ae1133ef47c24 or Ω to indicate a vacuum state.
  • an endomorphism TV → V, called "translation". (Borcherds's original formulation included a system of divided powers of T, because he did not assume the ground ring was divisible.)
  • a linear multiplication map Y:VV → V((z)), where V((z)) is the space of all formal Laurent series with coefficients in V. This structure is alternatively presented as an infinite collection of bilinear products unv, or as a left-multiplication map V → End(V)[[z±1]], called the state-field correspondence. For each uV, the operator-valued formal distributionY(u,z) is called a vertex operator or a field (inserted at zero), and the coefficient of z–n–1 is the operator un. The standard notation for the multiplication is

[size][ltr]
Quantum Field Theory II - 页 2 Fe7cd226b99d9a63d333f1c9a2d93c13.
These data are required to satisfy the following axioms:
[/ltr][/size]

  • (Identity) For any u ∈ VY(1,z)u = u = uz0 and Y(u,z)1 ∈ u + zV[[z]].



  • (Translation) T(1) = 0, and for any uv ∈ V,

[size][ltr]
Quantum Field Theory II - 页 2 8f3c93d013e5c91ab97b3dab36185f28
[/ltr][/size]

  • (Locality, or Jacobi identity, or Borcherds identity) For any u,vV, there exists a positive integer N such that (zx)N Y(u,z)Y(v,x) = (zx)NY(v,x)Y(u,z). This has several equivalent formulations in the literature, e.g., Frenkel-Lepowsky-Meurman introduced the Jacobi identity:

[size][ltr]
Quantum Field Theory II - 页 2 53e3e0d2276a02af05e3d1950d1cecdd
for all vectors uv, and w, where we define the formal delta series by:
Quantum Field Theory II - 页 2 33dd68ee9e4390d043eae1e69226d9e0
Borcherds initially used the following identity:
Quantum Field Theory II - 页 2 666e6dde56ed299d78b63d6a33c568cf
for any vectors uv, and w, and integers m and n. He later gave a more expansive version that is equivalent but easier to use:
Quantum Field Theory II - 页 2 Cb38b08f1a516dd414e992f63e9f6042
for any vectors uv, and w, and integers mn, and q.
Finally, there is a formal function version of locality: For any uvw ∈ V, there is an element
Quantum Field Theory II - 页 2 Ac825144d08b2aee6f43fe1f9a3ae6a5
such that
Quantum Field Theory II - 页 2 B783de9cfa35b25ff5acdb8b0930a978
are the corresponding expansions of Quantum Field Theory II - 页 2 B2a8a33f938ad12edcadbda251302fd9 in
Quantum Field Theory II - 页 2 Bc66e129309a281938768bc6b1e7cbea
vertex operator algebra is a vertex algebra equipped with aconformal element ω, such that the vertex operator Y(ω,z) is the weight 2 Virasoro field L(z):
Quantum Field Theory II - 页 2 995d71e766ba6890c58bb0d4b0a4d7b4
and satisfies the following properties:
[/ltr][/size]

  • [LmLn] = (m – n)Lm+n + (δm + n, 0/12) (m3m)c IdV, where c is a constant called the central charge, or rank of V. In particular, the coefficients of this vertex operator endow V with an action of the Virasoro algebra with central charge c.
  • L0 acts semisimply on V with integer eigenvalues that are bounded below.
  • Under the grading provided by the eigenvalues of L0, the multiplication on V is homogeneous in the sense that if u and v are homogeneous, then un v is homogeneous of degree deg(u)+deg(v)–n–1.
  • The identity 1 has degree 0, and the conformal element ω has degree 2.
  • L–1 = T.

[size][ltr]
A homomorphism of vertex algebras is a map of the underlying vector spaces that respects the additional identity, translation, and multiplication structure. Homomorphisms of vertex operator algebras have "weak" and "strong" forms, depending on whether they respect conformal vectors.
Commutative vertex algebras[edit]
A vertex algebra V is commutative if all vertex operators commute with each other. This is equivalent to the property that all products Y(u,z)v lie inV[[z]]. Given a commutative vertex algebra, the constant terms of multiplication endow the vector space with a commutative ring structure, and T is a derivation. Conversely, any commutative ring V with derivation Thas a canonical vertex algebra structure, where we set Y(u,z)v = u–1v z0 =uv. If the derivation T vanishes, we may set ω = 0 to obtain a vertex operator algebra concentrated in degree zero.
Any finite-dimensional vertex algebra is commutative. In particular, even the smallest examples of noncommutative vertex algebras require significant introduction.
Basic properties[edit]
The translation operator T in a vertex algebra induces infinitesimal symmetries on the product structure, and satisfies the following properties:
[/ltr][/size]

  • Y(u,z)1 = ezTu
  • Tu = u–21, so T is determined by Y.
  • Y(Tu,z) = d(Y(u,z))/dz
  • exTY(u,z)e–xT = Y(exTu,z) = Y(u,z+x)
  • (skew-symmetry) Y(u,z)v = ezTY(v,–z)u

[size][ltr]
For a vertex operator algebra, the other Virasoro operators satisfy similar properties:
[/ltr][/size]

  • xL0Y(u,z)x–L0 = Y(xL0u,xz)
  • exL1Y(u,z)e–xL1 = Y(ex(1–xz)L1(1–xz)–2L0u,z(1–xz)−1)
  • (quasi-conformality) Quantum Field Theory II - 页 2 0de6cd3b18a825378c625494d417d1e9 for all m≥–1.



  • (Associativity, or Cousin property): For any uvw ∈ V, the element

[size][ltr]
Quantum Field Theory II - 页 2 Ac825144d08b2aee6f43fe1f9a3ae6a5
given in the definition also expands to Y(Y(u,zx)v,x)w in V((x))((zx)).
The associativity property of a vertex algebra follows from the fact that the commutator of Y(u,z) and Y(v,x) is annihilated by a finite power of zx, i.e., one can expand it as a finite linear combination of derivatives of the formal delta function in (zx), with coefficients in End(V).
Reconstruction: Let V be a vertex algebra, and let {Ja} be a set of vectors, with corresponding fields Ja(z) ∈ End(V)[[z±1]]. If V is spanned by monomials in the positive weight coefficients of the fields (i.e., finite products of operators Jan applied to 1, where n is negative), then we may write the operator product of such a monomial as a normally ordered product of divided power derivatives of fields (here, normal ordering means polar terms on the left are moved to the right). Specifically,
Quantum Field Theory II - 页 2 9f9ded48877963ec94cde7b9e934b890
More generally, if one is given a vector space V with an endomorphism Tand vector 1, and one assigns to a set of vectors Ja a set of fields Ja(z) ∈ End(V)[[z±1]] that are mutually local, whose positive weight coefficients generate V, and that satisfy the identity and translation conditions, then the previous formula describes a vertex algebra structure.
Example: The rank 1 free boson[edit]
A basic example of a noncommutative vertex algebra is the rank 1 free boson, also called the Heisenberg vertex operator algebra. It is "generated" by a single vector b, in the sense that by applying the coefficients of the field b(z) = Y(b,z) to the vector 1, we obtain a spanning set. The underlying vector space is the infinite-variable polynomial ringC[x1,x2,...], where for positive n, the coefficient b–n of Y(b,z) acts as multiplication by xn, and bn acts as n times the partial derivative in xn. The action of b0 is multiplication by zero, producing the "momentum zero" Fock representation V0 of the Heisenberg Lie algebra (generated by bn for integers n, with commutation relations [bn,bm]=n δn,–m), i.e., induced by the trivial representation of the subalgebra spanned by bn, n ≥ 0.
The Fock space V0 can be made into a vertex algebra by following reconstruction:
Quantum Field Theory II - 页 2 2a0fcd9c3f9dd2084de17f6f90c37897
where :..: denotes normal ordering (i.e. moving all derivatives in x to the right). The vertex operators may also be written as a functional of a multivariable function f as:
Quantum Field Theory II - 页 2 Bab76045cf8e90129cf48726f825fe1e
if we understand that each term in the expansion of f is normal ordered.
The rank n free boson is given by taking an n-fold tensor product of the rank 1 free boson. For any vector b in n-dimensional space, one has a field b(z) whose coefficients are elements of the rank n Heisenberg algebra, whose commutation relations have an extra inner product term: [bn,cm]=n (b,c) δn,–m.
Example: Virasoro vertex operator algebras[edit]
Virasoro vertex operator algebras are important for two reasons: First, the conformal element in a vertex operator algebra canonically induces a homomorphism from a Virasoro vertex operator algebra, so they play a universal role in the theory. Second, they are intimately connected to the theory of unitary representations of the Virasoro algebra, and these play a major role in conformal field theory. In particular, the unitary Virasoro minimal models are simple quotients of these vertex algebras, and their tensor products provide a way to combinatorially construct more complicated vertex operator algebras.
The Virasoro vertex operator algebra is defined as an induced representation of the Virasoro algebra: If we choose a central charge c, there is a unique one-dimensional module for the subalgebra C[z]∂z + K for which K acts by cId, and C[z]∂z acts trivially, and the corresponding induced module is spanned by polynomials in L–n = –z–n–1z as n ranges over integers greater than 1. The module then has partition function
Quantum Field Theory II - 页 2 5cb133dc65bd5b97a5d8e3d7dff2b87e.
This space has a vertex operator algebra structure, where the vertex operators are defined by:
Quantum Field Theory II - 页 2 A2aed344c2666041c98123d665e8d94d
and Quantum Field Theory II - 页 2 2d735bcb3bd4febbf7a166c7f2824419. The fact that the Virasoro field L(z) is local with respect to itself can be deduced from the formula for its self-commutator:
Quantum Field Theory II - 页 2 6bf75b9d79af06e0df950e9124a24c2f
where c is central charge.
Given a vertex algebra homomorphism from a Virasoro vertex algebra of central charge c to any other vertex algebra, the vertex operator attached to the image of ω automatically satisfies the Virasoro relations, i.e., the image of ω is a conformal vector. Conversely, any conformal vector in a vertex algebra induces a distinguished vertex algebra homomorphism from some Virasoro vertex operator algebra.
The Virasoro vertex operator algebras are simple, except when c has the form 1–6(pq)2/pq for coprime integers p,q strictly greater than 1 - this follows from Kac's determinant formula. In these exceptional cases, one has a unique maximal ideal, and the corresponding quotient is called a minimal model. When p = q+1, the vertex algebras are unitary representations of Virasoro, and their modules are known as discrete series representations. They play an important role in conformal field theory in part because they are unusually tractable, and for small p, they correspond to well-known statistical-mechanical systems at criticality, e.g., the Ising model, the tri-critical Ising model, the three-state Potts model, etc. By work of Weiqang Wang [1] concerning fusion rules, we have a full description of the tensor categories of unitary minimal models. For example, when c=1/2 (Ising), there three irreducible modules with lowestL0-weight 0, 1/2, and 1/16, and its fusion ring is Z[x,y]/(x2–1, y2x–1, xyy).
Example: WZW vacuum modules[edit]
By replacing the Heisenberg Lie algebra with an untwisted affine Kac–Moody Lie algebra (i.e., the universal central extension of the algebra of polynomial loops on a finite-dimensional simple Lie algebra), one may construct the Vacuum representation in much the same way as the free boson vertex algebra is constructed. Concretely, pulling back the central extension
Quantum Field Theory II - 页 2 51969f924ba2679e9411e87b9efceea3
along the inclusion Quantum Field Theory II - 页 2 6f7d7c5f11704c950bede72a6d1f45d1 yields a split extension, and the vacuum module is induced from the one-dimensional representation of the latter on which a central basis element acts by some chosen constant called the "level". Since central elements can be identified with invariant inner products on the finite type Lie algebra Quantum Field Theory II - 页 2 9fa60b47d3ec5aeffcb61fe983c9e72b, one typically normalizes the level so that the Killing form has level twice the dual Coxeter number. Equivalently, level one gives the inner product for which the longest root has norm 2. This matches the loop group convention, where levels are discretized by third cohomology of simply connected compact Lie groups.
By choosing a basis Ja of the finite type Lie algebra, one may form a basis of the affine Lie algebra using Jan = Ja tn together with a central elementK. By reconstruction, we can describe the vertex operators by normally ordered products of derivatives of the fields
Quantum Field Theory II - 页 2 Ffd31da3c1c3ba273bdcea536248b281
When the level is non-critical, i.e., the inner product is not minus one half of the Killing form, the vacuum representation has a conformal element, given by the Sugawara construction.[2] For any choice of dual bases JaJawith respect to the level 1 inner product, the conformal element is
Quantum Field Theory II - 页 2 Ff37d251d2fbad8ea321aab7c3ecd9e0
and yields a vertex operator algebra whose central charge is Quantum Field Theory II - 页 2 7bd16009d8edf5c787bfad918fb022ef. At critical level, the conformal structure is destroyed, since the denominator is zero, but one may produce operatorsLn for n ≥ –1 by taking a limit as k approaches criticality.
This construction can be altered to work for the rank 1 free boson. In fact, the Virasoro vectors form a one-parameter family ωs = 1/2 x12 + s x2, endowing the resulting vertex operator algebras with central charge 1−12s2. When s=0, we have the following formula for the graded dimension:
Quantum Field Theory II - 页 2 A5dc10821915af61769bced2ec1d7834
This is known as the generating function for partitions, and is also written as q1/24 times the weight −1/2 modular form 1/η. The rank n free boson then has an n parameter family of Virasoro vectors, and when those parameters are zero, the character is qn/24 times the weight −n/2 modular form η–n.[/ltr][/size]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:29

[ltr]Modules[size=13][edit]
Much like ordinary rings, vertex algebras admit a notion of module, or representation. Modules play an important role in conformal field theory, where they are often called sectors. A standard assumption in the physics literature is that the full Hilbert space of a conformal field theory decomposes into a sum of tensor products of left-moving and right-moving sectors:
Quantum Field Theory II - 页 2 B66423ddf8486b88b54f0e0dd15a6451
That is, a conformal field theory has a vertex operator algebra of left-moving chiral symmetries, a vertex operator algebra of right-moving chiral symmetries, and the sectors moving in a given direction are modules for the corresponding vertex operator algebra.
Given a vertex algebra V with multiplication Y, a V-module is a vector space M equipped with an action YMV ⊗ M → M((z)), satisfying the following conditions:
(Identity) YM(1,z) = IdM(Associativity, or Jacobi identity) For any uv ∈ Vw ∈ M, there is an elementQuantum Field Theory II - 页 2 2b8641b32d7ba42d7fea2dc6ce64792c
such that YM(u,z)YM(v,x)w and YM(Y(u,zx)v,x)w are the corresponding expansions of Quantum Field Theory II - 页 2 B2a8a33f938ad12edcadbda251302fd9 in M((z))((x)) and M((x))((zx)). Equivalently, the following "Jacobi identity" holds:
Quantum Field Theory II - 页 2 9653ba6c9cd1dde861eb11e696f0723a
The modules of a vertex algebra form an abelian category. When working with vertex operator algebras, the previous definition is given the name "weak module", and V-modules are required to satisfy the additional condition that L0 acts semisimply with finite-dimensional eigenspaces and eigenvalues bounded below in each coset of Z. Work of Huang, Lepowsky, Miyamoto, and Zhang has shown at various levels of generality that modules of a vertex operator algebra admit a fusion tensor product operation, and form a braided tensor category.
When the category of V-modules is semisimple with finitely many irreducible objects, the vertex operator algebra V is called rational. Rational vertex operator algebras satisfying an additional finiteness hypothesis (known as Zhu's C2-cofiniteness condition) are known to be particularly well-behaved, and are called "regular". For example, Zhu's 1996 modular invariance theorem asserts that the characters of modules of a regular VOA form a vector-valued representation of SL2(Z). In particular, if a VOA is holomorphic, i.e., its representation category is equivalent to that of vector spaces, then its partition function is SL2(Z)-invariant up to a constant. Huang showed that the category of modules of a regular VOA is a modular tensor category, and its fusion rules satisfy theVerlinde formula.
To connect with our first example, the irreducible modules of the rank 1 free boson are given by Fock spaces Vλ with some fixed momentum λ, i.e., induced representations of the Heisenberg Lie algebra, where the elementb0 acts by scalar multiplication by λ. The space can be written asC[x1,x2,...]vλ, where vλ is a distinguished ground-state vector. The module category is not semisimple, since one may induce a representation of the abelian Lie algebra where b0 acts by a nontrivial Jordan block. For the rank n free boson, one has an irreducible module Vλ for each vector λ in complex n-dimensional space. Each vector b ∈ Cn yields the operator b0, and the Fock space Vλ is distinguished by the property that each such b0acts as scalar multiplication by the inner product (b,λ).
Unlike ordinary rings, vertex algebras admit a notion of twisted module attached to an automorphism. For an automorphism σ of order N, the action has the form V ⊗ M → M((z1/N)), with the following monodromy condition: if u ∈ V satisfies σ u = exp(2πik/N)u, then un = 0 unless nsatisfies n+k/N ∈ Z (there is some disagreement about signs among specialists). Geometrically, twisted modules can be attached to branch points on an algebraic curve with a ramified Galois cover. In the conformal field theory literature, twisted modules are called twisted sectors, and are intimately connected with string theory on orbifolds.
Vertex operator algebra defined by an even lattice[edit]
The lattice vertex algebra construction was the original motivation for defining vertex algebras. It is constructed by taking a sum of irreducible modules for the free boson corresponding to lattice vectors, and defining a multiplication operation by specifying intertwining operators between them. That is, if Λ is an even lattice, the lattice vertex algebra VΛ decomposes into free bosonic modules as:
Quantum Field Theory II - 页 2 Bc4d608564d317c76c56dcaaec0caf6d
Lattice vertex algebras are canonically attached to double covers of even integral lattices, rather than the lattices themselves. While each such lattice has a unique lattice vertex algebra up to isomorphism, the vertex algebra construction is not functorial, because lattice automorphisms have an ambiguity in lifting.[3]
The double covers in question are uniquely determined up to isomorphism by the following rule: elements have the form ±eα for lattice vectors α ∈ Λ (i.e., there is a map to Λ sending eα to α that forgets signs), and multiplication satisfies the relations eαeβ = (–1)(α,β)eβeα. Another way to describe this is that given an even lattice Λ, there is a unique (up to coboundary) normalised cocycle ε(α,β) with values ±1 such that (–1)(α,β) = ε(α,β)ε(β,α), where the normalization condition is that ε(α,0) = ε(0,α) = 1 for all α ∈ Λ. This cocycle induces a central extension of Λ by a group of order 2, and we obtain a twisted group ring Cε[Λ] with basis eα (α ∈ Λ), and multiplication rule eαeβ = ε(α,β)eα+β - the cocycle condition on ε ensures associativity of the ring.[4]
The vertex operator attached to lowest weight vector vλ in the Fock spaceVλ is
Quantum Field Theory II - 页 2 C1b8a1587ad9a3eb852ec55f03fc5643
where zλ is a shorthand for the linear map that takes any element of the α-Fock space Vα to the monomial z(λ, α). The vertex operators for other elements of the Fock space are then determined by reconstruction.
As in the case of the free boson, one has a choice of conformal vector, given by an element s of the vector space Λ ⊗ C, but the condition that the extra Fock spaces have integer L0 eigenvalues constrains the choice of s: for an orthonormal basis xi, the vector 1/2 xi,12 + s2 must satisfy (s,λ) ∈ Zfor all λ ∈ Λ, i.e., s lies in the dual lattice.
If the even lattice Λ is generated by its "root vectors" (those satisfying (α,α)=2), and any two root vectors are joined by a chain of root vectors with consecutive inner products non-zero then the vertex operator algebra is the unique simple quotient of the vacuum module of the affine Kac–Moody algebra of the corresponding simply laced simple Lie algebra at level one. This is known as the Frenkel–Kac (or FrenkelKacSegal) construction, and is based on the earlier construction by Sergio Fubini andGabriele Veneziano of the tachyonic vertex operator in the dual resonance model. Among other features, the zero modes of the vertex operators corresponding to root vectors give a construction of the underlying simple Lie algebra, related to a presentation originally due to Jacques Tits. In particular, one obtains a construction of all ADE type Lie groups directly from their root lattices. and this is commonly considered the simplest way to construct the 248 dimensional group E8.[5][6]
Vertex operator superalgebras[edit]
By allowing the underlying vector space to be a superspace (i.e., a Z/2Z-graded vector space Quantum Field Theory II - 页 2 08bfb0dd5826490dabf93793a1b71f82) one can define a vertex superalgebra by the same data as a vertex algebra, with 1 in V+ and T an even operator. The axioms are essentially the same, but one must incorporate suitable signs into the locality axiom, or one of the equivalent formulations. That is, if a and b are homogeneous, one comparesY(a,z)Y(b,w) with εY(b,w)Y(a,z), where ε is –1 if both a and b are odd and 1 otherwise. If in addition there is a Virasoro element ω in the even part ofV2, and the usual grading restrictions are satisfied, then V is called avertex operator superalgebra.
One of the simplest examples is the vertex operator superalgebra generated by a single free fermion ψ. As a Virasoro representation, it has central charge 1/2, and decomposes as a direct sum of Ising modules of lowest weight 0 and 1/2. One may also describe it as a spin representation of the Clifford algebra on the quadratic space t1/2C[t,t−1](dt)1/2 with residue pairing. The vertex operator superalgebra is holomorphic, in the sense that all modules are direct sums of itself, i.e., the module category is equivalent to the category of vector spaces.
The tensor square of the free fermion is called the free charged fermion, and by Boson-Fermion correspondence, it is isomorphic to the lattice vertex superalgebra attached to the odd lattice Z.[7] This correspondence has been used by Date-Jimbo-Kashiwara-Miwa to construct solitonsolutions to the KP hierarchy of nonlinear PDEs.
Superconformal structures[edit]
The Virasoro algebra has some supersymmetric extensions that naturally appear in superconformal field theory and superstring theory. The N=1, 2, and 4 superconformal algebras are of particular importance.
Infinitesimal holomorphic superconformal transformations of a supercurve (with one even local coordinate z and N odd local coordinates θ1,...,θN) are generated by the coefficients of a super-stress–energy tensorT(z,θ1,...,θN).
When N=1, T has odd part given by a Virasoro field L(z), and even part given by a field
Quantum Field Theory II - 页 2 0ee1785f9fd75f63f5e129d7dd8faff8
subject to commutation relations
[/ltr][/size]

  • Quantum Field Theory II - 页 2 9dd87e80711a5a4dbc659e43fa2219be
  • Quantum Field Theory II - 页 2 630b3252fc16947d1285423993125cdb

[size][ltr]
By examining the symmetry of the operator products, one finds that there are two possibilities for the field G: the indices n are either all integers, yielding the Ramond algebra, or all half-integers, yielding the Neveu-Schwarz algebra. These algebras have unitary discrete series representations at central charge
Quantum Field Theory II - 页 2 Bec8a824f9e2d52558d80d3c24decfab
and unitary representations for all c greater than 3/2, with lowest weight honly constrained by h≥ 0 for Neveu-Schwartz and h ≥ c/24 for Ramond.
An N=1 superconformal vector in a vertex operator algebra V of central charge c is an odd element τ ∈ V of weight 3/2, such that
Quantum Field Theory II - 页 2 0bd2c2dbd502c6a5bbb2f294722ed7bf
G-1/2τ = ω, and the coefficients of G(z) yield an action of the N=1 Neveu-Schwarz algebra at central charge c.
For N=2 supersymmetry, one obtains even fields L(z) and J(z), and odd fields G+(z) and G-(z). The field J(z) generates an action of the Heisenberg algebras (described by physicists as a U(1) current). There are both Ramond and Neveu-Schwartz N=2 superconformal algebras, depending on whether the indexing on the G fields is integral or half-integral. However, the U(1) current gives rise to a one-parameter family of isomorphic superconformal algebras interpolating between Ramond and Neveu-Schwartz, and this deformation of structure is known as spectral flow. The unitary representations are given by discrete series with central charge c = 3-6/m for integers m at least 3, and a continuum of lowest weights for c > 3.
An N=2 superconformal structure on a vertex operator algebra is a pair of odd elements τ+, τ- of weight 3/2, and an even element µ of weight 1 such that τ± generate G±(z), and µ generates J(z).
For N=3 and 4, unitary representations only have central charges in a discrete family, with c=3k/2 and 6k, respectively, as k ranges over positive integers.
Additional constructions[edit]
[/ltr][/size]

  • Fixed point subalgebras: Given an action of a symmetry group on a vertex operator algebra, the subalgebra of fixed vectors is also a vertex operator algebra. In 2013, Miyamoto proved that two important finiteness properties, namely Zhu's condition C2 and regularity, are preserved when taking fixed points under finite solvable group actions.



  • Current extensions: Given a vertex operator algebra and some modules of integral conformal weight, one may under favorable circumstances describe a vertex operator algebra structure on the direct sum. Lattice vertex algebras are a standard example of this. Another family of examples are framed VOAs, which start with tensor products of Ising models, and add modules that correspond to suitably even codes.



  • Orbifolds: Given a finite cyclic group acting on a holomorphic VOA, it is conjectured that one may construct a second holomorphic VOA by adjoining irreducible twisted modules and taking fixed points under an induced automorphism, as long as those twisted modules have suitable conformal weight. This is known to be true in special cases, e.g., groups of order at most 3 acting on lattice VOAs.



  • The coset construction (due to Goddard, Kent, and Olive): Given a vertex operator algebra V of central charge c and a set S of vectors, one may define the commutant C(V,S) to be the subspace of vectors vstrictly commute with all fields coming from S, i.e., such that Y(s,z)v ∈ V[[z]] for all s ∈ S. This turns out to be a vertex subalgebra, with YT, and identity inherited from V. and if S is a VOA of central charge cS, the commutant is a VOA of central charge ccS. For example, the embedding of SU(2) at level k+1 into the tensor product of two SU(2) algebras at levels k and 1 yields the Virasoro discrete series withp=k+2, q=k+3, and this was used to prove their existence in the 1980s. Again with SU(2), the embedding of level k+2 into the tensor product of level k and level 2 yields the N=1 superconformal discrete series.



  • BRST reduction: For any degree 1 vector v satisfying v02=0, the cohomology of this operator has a graded vertex superalgebra structure. More generally, one may use any weight 1 field whose residue has square zero. The usual method is to tensor with fermions, as one then has a canonical differential. An important special case is quantum Drinfeld-Sokolov reduction applied to affine Kac–Moody algebras to obtain affine W-algebras as degree 0 cohomology. TheseW algebras also admit constructions as vertex subalgebras of free bosons given by kernels of screening operators.

[size][ltr]
Additional Examples[edit]
[/ltr][/size]

  • The monster vertex algebra V (also called the "moonshine module"), the key to Borcherds's proof of the Monstrous moonshine conjectures, was constructed by Frenkel, Lepowsky, and Meurman in 1988. It is notable because its partition function is the modular invariant j–744, and its automorphism group is the largest sporadic simple group, known as the monster group. It is constructed by orbifolding the Leech lattice VOA by the order 2 automorphism induced by reflecting the Leech lattice in the origin. That is, one forms the direct sum of the Leech lattice VOA with the twisted module, and takes the fixed points under an induced involution. Frenkel, Lepowsky, and Meurman conjectured in 1988 that V is the unique holomorphic vertex operator algebra with central charge 24, and partition function j–744. This conjecture is still open.



  • Chiral de Rham complex: Malikov, Schechtman, and Vaintrob showed that by a method of localization, one may canonically attach a bcβγ (boson-fermion superfield) system to a smooth complex manifold. This complex of sheaves has a distinguished differential, and the global cohomology is a vertex superalgebra. Ben-Zvi, Heluani, and Szczesny showed that a Riemannian metric on the manifold induces an N=1 superconformal structure, which is promoted to an N=2 structure if the metric is Kähler and Ricci-flat, and a hyperKähler structure induces anN=4 structure. Borisov and Libgober showed that one may obtain the two-variable elliptic genus of a compact complex manifold from the cohomology of Chiral de Rham - if the manifold is Calabi-Yau, then this genus is a weak Jacobi form.

[size][ltr]
Related algebraic structures[edit]
[/ltr][/size]

  • If one considers only the singular part of the OPE in a vertex algebra, one arrives at the definition of a Lie conformal algebra. Since one is often only concerned with the singular part of the OPE, this makes Lie conformal algebras a natural object to study. There is a functor from vertex algebras to Lie conformal algebras that forgets the regular part of OPEs, and it has a left adjoint, called the "universal vertex algebra" functor. Vacuum modules of affine Kac–Moody algebras and Virasoro vertex algebras are universal vertex algebras, and in particular, they can be described very concisely once the background theory is developed.
  • There are several generalizations of the notion of vertex algebra in the literature. Some mild generalizations involve a weakening of the locality axiom to allow monodromy, e.g., the abelian intertwining algebras of Dong and Lepowsky. One may view these roughly as vertex algebra objects in a braided tensor category of graded vector spaces, in much the same way that a vertex superalgebra is such an object in the category of super vector spaces. More complicated generalizations relate to q-deformations and representations of quantum groups, such as in work of Frenkel–Reshetikhin, Etingof–Kazhdan, and Li.
  • Beilinson and Drinfeld introduced a sheaf-theoretic notion of chiral algebra that is closely related to the notion of vertex algebra, but is defined without using any visible power series. Given an algebraic curve X, a chiral algebra on X is a DX-module A equipped with a multiplication operation Quantum Field Theory II - 页 2 31e8562e1987bd45d40c86fe39a23dcf on X×X that satisfies an associativity condition. They also introduced an equivalent notion of factorization algebra that is a system of quasicoherent sheaves on all finite products of the curve, together with a compatibility condition involving pullbacks to the complement of various diagonals. Any translation-equivariant chiral algebra on the affine line can be identified with a vertex algebra by taking the fiber at a point, and there is a natural way to attach a chiral algebra on a smooth algebraic curve to any vertex operator algebra.

[size][ltr]
Alternative definitions[edit]
Another way to think of vertex algebras is as a generalisation of a Lie algebra with the addition of a continuous variable to both the generators of the algebra and the structure constant. (The structure constants define the algebra). So we would have:
Quantum Field Theory II - 页 2 E20c1216134344d7eb4796bd774c748e
which can also be expressed without the y dependence as:
Quantum Field Theory II - 页 2 D1902adbd644dced2837c9352b2416fc
which reveals the Vertex Multiplication as a group operation in which the group constants vary with their position on the conformal sheet.
Notes[edit]
[/ltr][/size]

  1. Jump up^ Wang 1993
  2. Jump up^ [1], The history of the Sugawara construction is complicated, with several attempts required to get the formula correct.
  3. Jump up^ Borcherds 1986
  4. Jump up^ Kac 1998
  5. Jump up^ Kac 1998
  6. Jump up^ Frenkel, Meurman & Lepowsky 1988
  7. Jump up^ Kac 1998

[size][ltr]
References[edit]
[/ltr][/size]


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:33

Algebraic curve

From Wikipedia, the free encyclopedia
  (Redirected from Algebraic curves)



[ltr]In mathematics, an algebraic curve or plane algebraic curve is the setof points on the Euclidean plane whose coordinates are zeros of somepolynomial in two variables.
For example, the unit circle is an algebraic curve, being the set of zeros of the polynomial x2 + y2 − 1
Various technical considerations have led to consider that the complexzeros of a polynomial belong to the curve. Also, the notion of algebraic curve has been generalized to allow the coefficients of the defining polynomial and the coordinates of the points of the curve to belong to anyfield, leading to the following definition.
In algebraic geometry, a plane affine algebraic curve defined over a field k is the set of points of K2 whose coordinates are zeros of somebivariate polynomial with coefficients in k, where K is some algebraically closed extension of k. The points of the curve with coordinates in k are thek-points of the curve and, all together, are the k part of the curve.
For example, (2,√−3) is a point of the curve defined by x2 + y2 − 1 = 0and the usual unit circle is the real part of this curve. The term "unit circle" may refer to all the complex points as well to only the real points, the exact meaning being usually clear from the context. The equationx2 + y2 + 1 = 0 defines an algebraic curve, whose real part is empty.
More generally, one may consider algebraic curves that are not contained in the plane, but in a space of higher dimension. A curve that is not contained in some plane is called a skew curve. The simplest example of a skew algebraic curve is the twisted cubic. One may also consider algebraic curves contained in the projective space and even algebraic curves that are defined independently to any embedding in an affine or projective space. This leads to the most general definition of an algebraic curve:
In algebraic geometry, an algebraic curve is an algebraic variety ofdimension one.[/ltr]



Quantum Field Theory II - 页 2 450px-Tschirnhausen_cubic.svg

Quantum Field Theory II - 页 2 Magnify-clip
The Tschirnhausen cubic is an algebraic curve of degree three.


[ltr]Contents
  [hide[/ltr]




[ltr]

In Euclidean geometry[edit]
An algebraic curve in the Euclidean plane is the set of the points whosecoordinates are the solutions of a bivariate polynomial equation p(xy) = 0. This equation is often called the implicit equation of the curve, by opposition to the curves that are the graph of a function defining explicitlyy as a function of x.
Given a curve given by such an implicit equation, the first problems that occur is to determine the shape of the curve and to draw it. These problems are not as easy to solve as in the case of the graph of a function, for which y may easily be computed for various values of x. The fact that the defining equation is a polynomial implies that the curve has some structural properties that may help to solve these problems.
Every algebraic curve may be uniquely decomposed into a finite number of smooth monotone arcs (also called branches) connected by some points sometimes called "remarkable points". A smooth monotone arc is the graph of a smooth function which is defined and monotone on an open interval of the x-axis. In each direction, an arc is either unbounded (one talk of an infinite arc) or has an end point which is either a singular point (this will be defined below) or a point with a tangent parallel to one of the coordinate axes.
For example, for the Tschirnhausen cubic of the figure, there are two infinite arcs having the origin (0,0) as end point. This point is the only singular point of the curve. There are two arcs having this singular point as one end point and having a second end point with a horizontal tangent. Finally, there are two other arcs having these points with horizontal tangent as first end point and sharing the unique point with vertical tangent as second end point. On the other hand, the sinusoid is certainly not an algebraic curve, having an infinite number of monotone arcs.
To draw an algebraic curve, it is important to know the remarkable points and their tangents, the infinite branches and their asymptote (if any) and the way in which the arcs connect them. It is also useful to consider also the inflection points as remarkable points. When all this information is drawn on a paper sheet, the shape of the curve appears usually rather clearly. If not it suffices to add a few other points and their tangents to get a good description of the curve.
The methods for computing the remarkable points and their tangents are described below, after section Projective curves.
Plane projective curves[edit]
It is often desirable to consider curves in the projective space. An algebraic curve in the projective plane or plane projective curve is the set of the points in a projective plane whose projective coordinates are zeros of a homogeneous polynomial in three variables P(xyz).
Every affine algebraic curve of equation p(xy) = 0 may be completed into the projective curve of equation Quantum Field Theory II - 页 2 Fbaf438d826916adb55755527ac0663a where
Quantum Field Theory II - 页 2 76fcf53b571c18b02244a280787e7741
is the result of the homogenization of p. Conversely, if P(xyz) = 0 is the homogeneous equation of a projective curve, then P(xy, 1) = 0 is the equation of an affine curve, which consists of the points of the projective curve whose third projective coordinate is not zero. These two operations are reciprocal one to the other, as Quantum Field Theory II - 页 2 Caab112cf8a251d2268203d8570a7366 and, if p is defined by Quantum Field Theory II - 页 2 60e2835ae8911b5e25daea1893e46ddf, then Quantum Field Theory II - 页 2 C18c7d9deb94452aef38879170982629, as soon as the homogeneous polynomial P is not divisible by z.
For example, the projective curve of equation x2 + y2 − z2 is the projective completion of the unit circle of equation x2 + y2 − 1 = 0.
This allows to consider that an affine curve and its projective completion are the same curve, or, more precisely that the affine curve is a part of the projective curve that is large enough to well define the "complete" curve. This point of view is commonly expressed by calling "points at infinity" of the affine curve the points (in finite number) of the projective completion that do not belong to the affine part.
Projective curves are frequently studied for themselves. They are also useful for the study of affine curves. For example, if p(xy) is the polynomial defining an affine curve, beside the partial derivatives Quantum Field Theory II - 页 2 2bfca10cba939b0255726e6ecddb7710 and Quantum Field Theory II - 页 2 267abf2d9bbd5f8a9fc06ba96b3ff08e, it is useful to consider the derivative at infinity
Quantum Field Theory II - 页 2 2fa24f4ee17ff4f7b52dad7b35886f6c
For example, the equation of the tangent of the affine curve of equationp(xy) = 0 at a point (ab) is
Quantum Field Theory II - 页 2 Fe9935c23ed6e12ff2556bca0cd3efe3
Remarkable points of a plane curve[edit][/ltr]

[ltr]
In this section, we consider a plane algebraic curve defined by a bivariate polynomial p(xy) and its projective completion, defined by the homogenization Quantum Field Theory II - 页 2 4b889f385cec838f68aca9d0ced9969d of p.
Intersection with a line[edit]
Knowing the points of intersection of a curve with a given line is frequently useful. The intersection with the axes of coordinates and the asymptotesare useful to draw the curve. Intersecting with a line parallel to the axes allows to find at least a point in each branch of the curve. If an efficientroot-finding algorithm is available, this allows to draw the curve by plotting the intersection point with all the lines parallel to the y-axis and passing through each pixel on the x-axis.
If the polynomial defining the curve has degree d, any line cuts the curve in at most d points. Bézout's theorem asserts that this number is exactly d, if the points are searched in the projective plane over an algebraically closed field (for example the complex numbers), and counted with theirmultiplicity. The method of computation that follows proves again this theorem, in this simple case.
To compute the intersection of the curve defined by the polynomial p with the line of equation ax+by+c = 0, one solves in x (or in y if a = 0) the equation of the line. Substituting the result in p, one gets a univariate equation q(y) = 0 (or q(x) = 0, if the equation of the line has been solved iny), whose roots are one coordinate of the intersection points. The other coordinate is deduced from the equation of the line. The multiplicity of an intersection point is the multiplicity of the corresponding root. There is an intersection point at infinity, if the degree of q is lower than the degree ofp; the multiplicity of such an intersection point at infinity is the difference of the degrees of p and q.
Tangent at a point[edit]
The tangent at a point (ab) of the curve is the line of equation Quantum Field Theory II - 页 2 2d3b81dc11cd542456530021309524d4, like for everydifferentiable curve defined by an implicit equation. In the case of polynomials, another formula for the tangent has a simpler constant term and is more symmetric:
Quantum Field Theory II - 页 2 44b6762781b273fd02550485d8ba619f
where Quantum Field Theory II - 页 2 E15dd74b0094d899c3605d4f456683ff is the derivative at infinity. The equivalence of the two equations results from Euler's homogeneous function theorem applied to P.
If Quantum Field Theory II - 页 2 4bd6765c4f24036b6bf70f848a39fc0e the tangent is not defined and the point is a singular point.
This extends immediately to the projective case: The equation of the tangent of at the point of projective coordinates (a:b:c) of the projective curve of equation P(xyz) = 0 is
Quantum Field Theory II - 页 2 Dd79e57af14a5dfc1add8c63f81971ea
and the points of the curves that are singular are the points such that
Quantum Field Theory II - 页 2 5697f7bd9c48a240c89f3ee0006c4095
(The condition P(abc) = 0 is implied by these conditions, by Euler's homogeneous function theorem.)
Asymptotes[edit]
Every infinite branch of an algebraic curve corresponds to a point at infinity on the curve, that is a point of the projective completion of the curve that does not belongs to its affine part. The correspondingasymptote is the tangent of the curve at that point. The general formula for a tangent to a projective curve may apply, but it is worth to make it explicit in this case.
Let Quantum Field Theory II - 页 2 Eabaf1d740996f558ce8406fbd180975 be the decomposition of the polynomial defining the curve into its homogeneous parts, where pi is the sum of the monomials of p of degree i. It follows that
Quantum Field Theory II - 页 2 46d3c982a48d58921cf57251b7363a1a
and
Quantum Field Theory II - 页 2 D43308b014fd6655f05d967c4ca9bf4a
A point at infinity of the curve is a zero of p of the form (ab, 0). Equivalently, (ab) is a zero of pd. The fundamental theorem of algebraimplies that, over an algebraically closed field (typically, the field of complex numbers), pd factors into a product of linear factors. Each factor defines a point at infinity on the curve: if bx − ay is such a factor, then it defines the point at infinity (ab, 0). Over the reals, pd factors into linear and quadratic factors. The irreducible quadratic factors define non-real points at infinity, and the real points are given by the linear factors. If (ab, 0) is a point at infinity of the curve, one says that (ab) is an asymptotic direction. Setting q = pd the equation of the corresponding asymptote is
Quantum Field Theory II - 页 2 5141fc81014fa8c515187865cc433536
If Quantum Field Theory II - 页 2 2c88f665fc6a991f7287dfbe79b9cf6e and Quantum Field Theory II - 页 2 48f399b203a9dc88f2f7627bc547ea72 the asymptote is the line at infinity, and, in the real case, the curve has a branch that looks like a parabola. In this case one says that the curve has a parabolic branch. If
Quantum Field Theory II - 页 2 C947ccf2e73c6bc20e166beb597c7adc
the curve has a singular point at infinity and may have several asymptotes. They may be computed by the method of computing the tangent cone of a singular point.
Singular points[edit]
The singular points of a curve of degree d defined by a polynomial p(x,y) of degree d are the solutions of the system of equations:
Quantum Field Theory II - 页 2 F0c7441c4ab6599549ca5629d7deea1b
In characteristic zero, this system is equivalent with
Quantum Field Theory II - 页 2 Cd3e9426381ddd127fbbafd85fac6e8c
where, with the notation of the preceding section, Quantum Field Theory II - 页 2 29c92480927777784ad19486df2e096d The systems are equivalent because ofEuler's homogeneous function theorem. The latter system has the advantage of having its third polynomial of degree d-1 instead of d.
Similarly, for a projective curve defined by a homogeneous polynomialP(x,y,z) of degree d, the singular points have the solutions of the system
Quantum Field Theory II - 页 2 642af153c04e2b0b96646350ae3e12ba
as homogeneous coordinates. (In positive characteristic, the equation Quantum Field Theory II - 页 2 1a987d1cc9164f7818bea6654c4c44f5 has to be added to the system.)
This implies that the number of singular points is finite as soon as p(x,y) orP(x,y,z) is square freeBézout's theorem implies thus that the number of singular points is at most (d−1)2, but this bound is not sharp because the system of equations is overdetermined. If reducible polynomials are allowed, the sharp bound is d(d−1)/2, this value being reached when the polynomial factors in linear factors, that is if the curve is the union of dlines. For irreducible curves and polynomials, the number of singular points is at most (d−1)(d−2)/2, because of the formula expressing the genus in term of the singularities (see below). The maximum is reached by the curves of genus zero whose all singularities have multiplicity two and distinct tangents (see below).
The equation of the tangents at a singular point are given by the nonzero homogeneous part of lowest degree in the Taylor series of the polynomial at the singular point. When one changes the coordinates to put the singular point at the origin, the equation of the tangents at the singular point is thus the nonzero homogeneous part of lowest degree of the polynomial, and the multiplicity of the singular point is the degree of this homogeneous part.
Non plane algebraic curves[edit]
An algebraic curve is an algebraic variety of dimension one. This implies that an affine curve in an affine space of dimension n is defined by, at least, n−1 polynomials in n variables. To define a curve, these polynomials must generate a prime ideal of Krull dimension 1. This condition is not easy to test in practice. Therefore the following way to represent non plane curves may be preferred.
Let Quantum Field Theory II - 页 2 3bb52b87860b32ba54af42642b9ec446 be n − 1 polynomials in two variables x1 and x2such that f is irreducible. The points in the affine space of dimension nsuch whose coordinates satisfy the equations and inequations
Quantum Field Theory II - 页 2 527ecf268b77eb8fadcd17a7f19d7691
are all the points of an algebraic curve in which a finite number of points have been removed. This curve is defined by a system of generators of the ideal of the polynomials h such that it exists an integer k such Quantum Field Theory II - 页 2 26a4fb2d4d173e8e3a99674a3c251101belongs to the ideal generated by Quantum Field Theory II - 页 2 1e0be95a86943e97911f2922db5d6900. This representation is a rational equivalence between the curve and the plane curve defined by f. Every algebraic curve may be represented in this way. However, a linear change of variables may be needed in order to make almost always injective the projection on the two first variables. When a change of variables is needed, almost every change is convenient, as soon as it is defined over an infinite field.
This representation allows to deduce easily any property of a non-plane algebraic curve, including its graphical representation, from the corresponding property of its plane projection.
For a curve defined by its implicit equations, above representation of the curve may easily deduced from a Gröbner basis for a block ordering such that the block of the smaller variables is (x1x2). The polynomial f is the unique polynomial in the base that depends only of x1 and x2. The fractions gi/g0 are obtained by choosing, for i = 3, ..., n, a polynomial in the basis that is linear in xi and depends only on x1x2 and xi. If these choices are not possible, this means either that the equations define an algebraic set that is not a variety, or that the variety is not of dimension one, or that one must change of coordinates. The latter case occurs when f exists and is unique, and, for i = 3, ..., n, there exist polynomials whose leading monomial depends only on x1x2 and xi.
Algebraic function fields[edit]
The study of algebraic curves can be reduced to the study of irreduciblealgebraic curves. Up to birational equivalence, these are categorically equivalent to algebraic function fields. An algebraic function field is a field of algebraic functions in one variable K defined over a given field F. This means there exists an element x of K which is transcendental over F, and such that K is a finite algebraic extension of F(x), which is the field of rational functions in the indeterminate x over F.
For example, consider the field C of complex numbers, over which we may define the field C(x) of rational functions in C. If y2 = x3 − x − 1, then the field C(xy) is an elliptic function field. The element x is not uniquely determined; the field can also be regarded, for instance, as an extension of C(y). The algebraic curve corresponding to the function field is simply the set of points (xy) in C2 satisfying y2 = x3 − x − 1.
If the field F is not algebraically closed, the point of view of function fields is a little more general than that of considering the locus of points, since we include, for instance, "curves" with no points on them. If the base field F is the field R of real numbers, then x2 + y2 = −1 defines an algebraic extension field of R(x), but the corresponding curve considered as a locus has no points in R. However, it does have points defined over the algebraic closure C of R.
Complex curves and real su***ces[edit]
A complex projective algebraic curve resides in n-dimensional complex projective space CPn. This has complex dimension n, but topological dimension, as a real manifold, 2n, and is compactconnected, andorientable. An algebraic curve likewise has topological dimension two; in other words, it is a su***ce. A nonsingular complex projective algebraic curve will then be a smooth orientable su***ce as a real manifold, embedded in a compact real manifold of dimension 2n which is CPnregarded as a real manifold.
The topological genus of this su***ce, that is the number of handles or donut holes, is equal to the genus of the algebraic curve that may be computed by algebraic means. In short, if one consider a plane projection of a non singular curve, that has degree d and only ordinary singularities (singularities of multiplicity two with distinct tangents), then the genus is (d − 1)(d − 2)/2 − k, where k is the number of these singularities.
Compact Riemann su***ces[edit]
The theory of compact Riemann su***ces consists in studying non-singular complex algebraic curves through the complex analytic structure induced on this real compact su***ce.
A Riemann su***ce is a connected complex analytic manifold of one complex dimension, which makes it a connected real manifold of two dimensions. It is compact if it is compact as a topological space.
There is a triple equivalence of categories between the category of smooth projective algebraic curves over the complex numbers (with rational mapsas morphisms), the category of compact Riemann su***ces, and the category of complex algebraic function fields, so that in studying these subjects we are in a sense studying the same thing. This allows complex analytic methods to be used in algebraic geometry, and algebraic-geometric methods in complex analysis, and field-theoretic methods to be used in both, which is characteristic of a much wider class of problems than simply curves and Riemann su***ces.
See also Algebraic geometry and analytic geometry, as more general theory.
Singularities[edit]
Using the intrinsic concept of tangent space, points P on an algebraic curve C are classified as smooth or non-singular, or else singular. Givenn−1 homogeneous polynomials in n+1 variables, we may find the Jacobian matrix as the (n−1)×(n+1) matrix of the partial derivatives. If the rank of this matrix is n−1, then the polynomials define an algebraic curve (otherwise they define an algebraic variety of higher dimension). If the rank remainsn−1 when the Jacobian matrix is evaluated at a point P on the curve, then the point is a smooth or regular point; otherwise it is a singular point. In particular, if the curve is a plane projective algebraic curve, defined by a single homogeneous polynomial equation f(x,y,z) = 0, then the singular points are precisely the points P where the rank of the 1×(n+1) matrix is zero, that is, where
Quantum Field Theory II - 页 2 39fa915c9073b5145896cec5fb40eef4
Since f is a polynomial, this definition is purely algebraic and makes no assumption about the nature of the field F, which in particular need not be the real or complex numbers. It should of course be recalled that (0,0,0) is not a point of the curve and hence not a singular point.
Similarly, for an affine algebraic curve defined by a single polynomial equation f(x,y) = 0, then the singular points are precisely the points P of the curve where the rank of the 1×n Jacobian matrix is zero, that is, where
Quantum Field Theory II - 页 2 C5243972e3321271f0dbb6fce66ab18f
The singularities of a curve are not birational invariants. However, locating and classifying the singularities of a curve is one way of computing thegenus, which is a birational invariant. For this to work, we should consider the curve projectively and require F to be algebraically closed, so that all the singularities which belong to the curve are considered.
Classification of singularities[edit][/ltr]

Quantum Field Theory II - 页 2 220px-Cusp.svg

Quantum Field Theory II - 页 2 Magnify-clip
x3 = y2

[ltr]
Singular points include multiple points where the curve crosses over itself, and also various types of cusp, for example that shown by the curve with equation x3 = y2 at (0,0).
A curve C has at most a finite number of singular points. If it has none, it can be called smooth ornon-singular. For this definition to be correct, we must use analgebraically closed field and a curve C in projective space (i.e.,complete in the sense of algebraic geometry). If, for example, we simply look at a curve in the real affine plane there might be singular P modulo the stalk, or alternatively as the sum of m(m−1)/2, where m is the multiplicity, over all infinitely near singular points Q lying over the singular point P. Intuitively, a singular point with delta invariant δ concentrates δ ordinary double points at P. For an irreducible and reduced curve and a point P we can define δ algebraically as the length of Quantum Field Theory II - 页 2 22dbd119ec24cee9f78995263191fd2f where Quantum Field Theory II - 页 2 1ceb2e9651a3033d8acfbdeedb14688d is the local ring at P and Quantum Field Theory II - 页 2 Dd42eccec02624cee762a05d05cfcc3b is its integral closure. See also Hartshorne, Algebraic Geometry, IV Ex. 1.8.
The Milnor number μ of the singularity is the degree of the mapping gradf(x,y)/|grad f(x,y)| on the small sphere of radius ε, in the sense of the topological degree of a continuous mapping, where grad f is the (complex) gradient vector field of f. It is related to δ and r by the Milnor-Jung formula,
μ = 2δ − r + 1.
Another singularity invariant of note is the multiplicity m, defined as the maximum integer such that the derivatives of f to all orders up to m vanish.
Computing the delta invariants of all of the singularities allows the genus gof the curve to be determined; if d is the degree, then
Quantum Field Theory II - 页 2 5da65f2c6b3d1b045864d057a5221bf3
where the sum is taken over all singular points P of the complex projective plane curve. It is called the genus formula.
Singularities may be classified by the triple [m, δ, r], where m is the multiplicity, δ is the delta-invariant, and r is the branching number. In these terms, an ordinary cusp is a point with invariants [2,1,1] and an ordinary double point is a point with invariants [2,1,2]. An ordinary n-multiple point may be defined as one having invariants [nn(n−1)/2, n].
Examples of curves[edit]
Rational curves[edit]
rational curve, also called a unicursal curve, is any curve which isbirationally equivalent to a line, which we may take to be a projective line; accordingly, we may identify the function field of the curve with the field of rational functions in one indeterminate F(x). If F is algebraically closed, this is equivalent to a curve of genus zero; however, the field of all real algebraic functions defined on the real algebraic variety x2+y2 = −1 is a field of genus zero which is not a rational function field.
Concretely, a rational curve of dimension n over F can be parameterized (except for isolated exceptional points) by means of n rational functions defined in terms of a single parameter t; by clearing denominators we can turn this into n+1 polynomial functions in projective space. An example would be the rational normal curve.
Any conic section defined over F with a rational point in F is a rational curve. It can be parameterized by drawing a line with slope t through the rational point, and intersection with the plane quadratic curve; this gives a polynomial with F-rational coefficients and one F-rational root, hence the other root is F-rational (i.e., belongs to F) also.[/ltr]

Quantum Field Theory II - 页 2 220px-Rotated_ellipse.svg

Quantum Field Theory II - 页 2 Magnify-clip
x2 + xy + y2 = 1

[ltr]
For example, consider the ellipsex2 + xy + y2 = 1, where (−1, 0) is a rational point. Drawing a line with slope t from (−1,0), y = t(x+1), substituting it in the equation of the ellipse, factoring, and solving for x, we obtain
Quantum Field Theory II - 页 2 30acc7bc56d4171112200e9858b891b9
We then have that the equation fory is
Quantum Field Theory II - 页 2 5ca5feba56dd91895fd56de084356eb5
which defines a rational parameterization of the ellipse and hence shows the ellipse is a rational curve. All points of the ellipse are given, except for (−1,1), which corresponds to t = ∞; the entire curve is parameterized therefore by the real projective line.
Such a rational parameterization may be considered in the projective space by equating the first projective coordinates to the numerators of the parameterization and the last one to the common denominator. As the parameter is defined in a projective line, the polynomials in the parameter should be homogenized. For example, the projective parameterization of above ellipse is
Quantum Field Theory II - 页 2 Bc522a487d32832a2ffed2ede1c8b53b
Eliminating T and U between these equations we get again the projective equation of the ellipse
Quantum Field Theory II - 页 2 22e6b869bbeec2a1fa95afaed5e10877
which may be easily obtained directly by homogenizing above equation.
Many of the curves on Wikipedia's list of curves are rational, and hence have similar rational parameterizations.
Elliptic curves[edit]
An elliptic curve may be defined as any curve of genus one with a rational point: a common model is a nonsingular cubic curve, which suffices to model any genus one curve. In this model the distinguished point is commonly taken to be an inflection point at infinity; this amounts to requiring that the curve can be written in Tate-Weierstrass form, which in its projective version is
Quantum Field Theory II - 页 2 02f88371750822d9a4823244a86f0c58
Elliptic curves carry the structure of an abelian group with the distinguished point as the identity of the group law. In a plane cubic model three points sum to zero in the group if and only if they are collinear. For an elliptic curve defined over the complex numbers the group is isomorphic to the additive group of the complex plane modulo the period lattice of the corresponding elliptic functions.
The intersection of two quadric su***ces is in general a nonsingular curve of genus one and degree four, and thus an elliptic curve, if it has a rational point. In special cases, the intersection either may be a rational singular quartic, or is decomposed in curves of smaller degrees which are not always distinct (either a cubic curve a line, or two conics, or a conic and two lines, or four lines).
Curves of genus greater than one[edit]
Curves of genus greater than one differ markedly from both rational and elliptic curves. Such curves defined over the rational numbers, by Faltings' theorem, can have only a finite number of rational points, and they may be viewed as having a hyperbolic geometry structure. Examples are thehyperelliptic curves, the Klein quartic curve, and the Fermat curvexn + yn = zn when n is greater than three.
See also[edit]
Classical algebraic geometry[edit][/ltr]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:37

[ltr]Modern algebraic geometry[size=13][edit]
[/ltr][/size]
[size][ltr]
Geometry of Riemann su***ces[edit]
[/ltr][/size]
[size][ltr]
References[edit]
[/ltr][/size]

  • Egbert Brieskorn and Horst KnörrerPlane Algebraic CurvesJohn Stillwell, translator, Birkhäuser, 1986
  • Claude ChevalleyIntroduction to the Theory of Algebraic Functions of One VariableAmerican Mathematical Society, Mathematical Surveys Number VI, 1951
  • Hershel M. Farkas and Irwin Kra, Riemann Su***ces, Springer, 1980
  • W. Fulton, Algebraic Curves: an introduction to algebraic geometryavailable at [1]
  • C.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate IntroductionCambridge University Press, 1998.
  • Phillip A. GriffithsIntroduction to Algebraic Curves, Kuniko Weltin, trans., American Mathematical Society, Translation of Mathematical Monographs volume 70, 1985 revision
  • Robin HartshorneAlgebraic Geometry, Springer, 1977
  • Shigeru IitakaAlgebraic Geometry: An Introduction to the Birational Geometry of Algebraic Varieties, Springer, 1982
  • John MilnorSingular Points of Complex Hypersu***cesPrinceton University Press, 1968
  • George SalmonHigher Plane Curves, Third Edition, G. E. Stechert & Co., 1934
  • Jean-Pierre SerreAlgebraic Groups and Class Fields, Springer, 1988
  • Claire Voisin LECTURES ON THE HODGE AND GROTHENDIECK–HODGE CONJECTURES;[2] ANTICANONICAL DIVISORS AND CURVE CLASSES ON FANO MANIFOLDS;[3] Voisin C. Hodge theory and complex algebraic geometry 1;[4] Green's canonical syzygy conjecture for generic curves of odd genus;[5] Green’s generic syzygy conjecture for curves of even genus lying on a K3 su***ce [6]
  • Montserrat Teixidor i Bigas ON A CONJECTURE OF LANGE;[7] Moduli spaces of vector bundles on reducible curves;[8] Green’s Conjecture for the generic r-gonal curve of genus g ¸ 3r ¡ 7 [9]
  • Ernst Kötter (1887). "Grundzüge einer rein geometrischen Theorie der algebraischen ebenen Kurven (Fundamentals of a purely geometrical theory of algebraic plane curves)". Transactions of the Royal Academy of Berlin. — gained the 1886 Academy prize[10]

[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Algebraic Curves: an introduction to algebraic geometry
  2. Jump up^ LECTURES ON THE HODGE AND GROTHENDIECK–HODGE CONJECTURES
  3. Jump up^ ANTICANONICAL DIVISORS AND CURVE CLASSES ON FANO MANIFOLDS
  4. Jump up^ Hodge theory and complex algebraic geometry 1
  5. Jump up^ Green's canonical syzygy conjecture for generic curves of odd genus
  6. Jump up^ Green’s generic syzygy conjecture for curves of even genus lying on a K3 su***ce
  7. Jump up^ ON A CONJECTURE OF LANGE
  8. Jump up^ Moduli spaces of vector bundles on reducible curves
  9. Jump up^ Green’s Conjecture for the generic r-gonal curve of genus g ¸ 3r ¡ 7
  10. Jump up^ Norman Fraser (Feb 1888). "Kötter's synthetic geometry of algebraic curves"Proceedings of the Edinburgh Mathematical Society 7: 46–61.Here: p.46




一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:44

Seiberg-Witten map

From Wikipedia, the free encyclopedia




[ltr]The Seiberg-Witten map is a map used in gauge theory and string theoryintroduced by Nathan Seiberg and Edward Witten which relates non-commutative degress of freedom of a gauge theory to their commutative counterparts. It was argued by Seiberg and Witten that certain non-commutative gauge theories are equivalent to commutative ones and that there exists a map from a commutative gauge field to a non-commutative one, which is compatible with the gauge structure of each.
References[size=13][edit]
[/ltr][/size]




Categories



Seiberg–Witten invariant

From Wikipedia, the free encyclopedia



[ltr]In mathematics, Seiberg–Witten invariants are invariants of compact smooth 4-manifolds introduced by Witten (1994), using the Seiberg–Witten theory studied by Seiberg and Witten (1994a1994b) during their investigations of Seiberg–Witten gauge theory.
Seiberg–Witten invariants are similar to Donaldson invariants and can be used to prove similar (but sometimes slightly stronger) results about smooth 4-manifolds. They are technically much easier to work with than Donaldson invariants; for example, the moduli spaces of solutions of the Seiberg–Witten equations tend to be compact, so one avoids the hard problems involved in compactifying the moduli spaces in Donaldson theory.
For detailed descriptions of Seiberg–Witten invariants see (Donaldson 1996), (Moore 2001), (Morgan 1996), (Nicolaescu 2000), (Scorpan 2005, Chapter 10). For the relation to symplectic manifolds and Gromov–Witten invariants see (Taubes 2000). For the early history see (Jackson 1995).[/ltr]


[ltr]Contents
  [hide[/ltr]




[ltr]

Spinc-structures[edit]
The Seiberg-Witten equations depend on the choice of a complex spin structure, Spinc, on a 4-manifold M. In 4 dimensions the group Spinc is
(U(1)×Spin(4))/(Z/2Z),
and there is a homomorphism from it to SO(4). A Spinc-structure on M is a lift of the natural SO(4) structure on the tangent bundle (given by theRiemannian metric and orientation) to the group Spinc. Every smooth compact 4-manifold M has Spinc-structures (though most do not have spin structures).
Seiberg–Witten equations[edit]
Fix a smooth compact 4-manifold M, choose a spinc-structure s on M, and write W+W for the associated spinor bundles, and L for the determinant line bundle. Write φ for a self-dual spinor field (a section of W+) and A for a U(1) connection on L. The Seiberg–Witten equations for (φ,A) are
Quantum Field Theory II - 页 2 8aa9a9a93fb0564d8c4950449f67f263Quantum Field Theory II - 页 2 9d6d4e734697397517bfc2a7409cbbc4
where DA is the Dirac operator of AFA is the curvature 2-form of A, andFA+ is its self-dual part, and σ is the squaring map from W+ to imaginary self-dual 2-forms and Quantum Field Theory II - 页 2 4d1b7b74aba3cfabd624e898d86b4602 is a real selfdual two form, often taken to be zero or harmonic.
The solutions (φ,A) to the Seiberg–Witten equations are calledmonopoles, as these equations are the field equations of masslessmagnetic monopoles on the manifold M.
The moduli space of solutions[edit]
The space of solutions is acted on by the gauge group, and the quotient by this action is called the moduli space of monopoles.
The moduli space is usually a manifold. A solution is called reducible if it is fixed by some non-trivial element of the gauge group which is equivalent to Quantum Field Theory II - 页 2 C3caaffa8f70272e461c725e3ae50211. A necessary and sufficient condition for reducible solutions for a metric on M and self dual 2 forms Quantum Field Theory II - 页 2 4d1b7b74aba3cfabd624e898d86b4602 is that the self-dual part of the harmonic representative of the cohomology class of the determinant line bundle is equal to the harmonic part of Quantum Field Theory II - 页 2 7ebe78f2198b455009bc13061049da6b. The moduli space is a manifold except at reducible monopoles. So if b2+(M)≥1 then the moduli space is a (possibly empty) manifold for generic metrics. Moreover all components have dimension
Quantum Field Theory II - 页 2 61c4e242bbf60363d9275e75a9331885
The moduli space is empty for all but a finite number of spinc structures s, and is always compact.
A manifold M is said to be of simple type if the moduli space is finite for alls. The simple type conjecture states that if M is simply connected andb2+(M)≥2 then the moduli space is finite. It is true for symplectic manifolds. If b2+(M)=1 then there are examples of manifolds with moduli spaces of arbitrarily high dimension.
Seiberg–Witten invariants[edit]
The Seiberg–Witten invariants are easiest to define for manifolds M of simple type. In this case the invariant is the map from spinc structures s toZ taking s to the number of elements of the moduli space counted with signs.
If the manifold M has a metric of positive scalar curvature and b2+(M)≥2 then all Seiberg–Witten invariants of M vanish.
If the manifold M is the connected sum of two manifolds both of which haveb2+≥1 then all Seiberg–Witten invariants of M vanish.
If the manifold M is simply connected and symplectic and b2+(M)≥2 then it has a spinc structure s on which the Seiberg–Witten invariant is 1. In particular it cannot be split as a connected sum of manifolds with b2+≥1.
References[edit][/ltr]




Categories




Noncommutative geometry

From Wikipedia, the free encyclopedia


[ltr]Not to be confused with Anabelian geometry.
Noncommutative geometry (NCG) is a branch of mathematicsconcerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which Quantum Field Theory II - 页 2 3e44107170a520582ade522fa73c1d15 does not always equal Quantum Field Theory II - 页 2 0b82a7c1ad82c6280c00e30b81be916d; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Motivation[edit]
The main motivation is to extend the commutative duality between spaces and functions to the noncommutative setting. In mathematics, spaces, which are geometric in nature, can be related to numerical functions on them. In general, such functions will form a commutative ring. For instance, one may take the ring C(X) of continuous complex-valued functions on atopological space X. In many cases (e.g., if X is a compact Hausdorff space), we can recover X from C(X), and therefore it makes some sense to say that X has commutative topology.
More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the Banach algebra of functions on the space (Gel'fand-Neimark). In commutative algebraic geometryalgebraic schemes are locally prime spectra of commutative unital rings (A. Grothendieck), and schemes can be reconstructed from the categories of quasicoherent sheaves of modules on them (P. Gabriel-A. Rosenberg). For Grothendieck topologies, the cohomological properties of a site are invariant of the corresponding category of sheaves of sets viewed abstractly as a topos (A. Grothendieck). In all these cases, a space is reconstructed from the algebra of functions or its categorified version—some category of sheaves on that space.
Functions on a topological space can be multiplied and added pointwise hence they form a commutative algebra; in fact these operations are local in the topology of the base space, hence the functions form a sheaf of commutative rings over the base space.
The dream of noncommutative geometry is to generalize this duality to the duality between
[/ltr][/size]

  • noncommutative algebras, or sheaves of noncommutative algebras, or sheaf-like noncommutative algebraic or operator-algebraic structures



  • and geometric entities of certain kind,

[size][ltr]
and interact between the algebraic and geometric description of those via this duality.
Regarding that the commutative rings correspond to usual affine schemes, and commutative C*-algebras to usual topological spaces, the extension to noncommutative rings and algebras requires non-trivial generalization oftopological spaces, as "non-commutative spaces". For this reason, some talk about non-commutative topology, though the term also has other meanings.
Applications in mathematical physics[edit]
Some applications in particle physics are described on the entriesNoncommutative standard model and Noncommutative quantum field theory. Sudden rise in interest in noncommutative geometry in physics, follows after the speculations of its role in M-theory made in 1997.[1]
Motivation from ergodic theory[edit]
Some of the theory developed by Alain Connes to handle noncommutative geometry at a technical level has roots in older attempts, in particular inergodic theory. The proposal of George Mackey to create a virtual subgroup theory, with respect to which ergodic group actions would become homogeneous spaces of an extended kind, has by now been subsumed.
Noncommutative C*-algebras, von Neumann algebras[edit]
(The formal duals of) non-commutative C*-algebras are often now called non-commutative spaces. This is by analogy with the Gelfand representation, which shows that commutative C*-algebras are dual tolocally compact Hausdorff spaces. In general, one can associate to any C*-algebra S a topological space Ŝ; see spectrum of a C*-algebra.
For the duality between σ-finite measure spaces and commutative von Neumann algebrasnoncommutative von Neumann algebras are callednon-commutative measure spaces.
Noncommutative differentiable manifolds[edit]
A smooth Riemannian manifold M is a topological space with a lot of extra structure. From its algebra of continuous functions C(M) we only recoverM topologically. The algebraic invariant that recovers the Riemannian structure is a spectral triple. It is constructed from a smooth vector bundleE over M, e.g. the exterior algebra bundle. The Hilbert space L2(M,E) of square integrable sections of E carries a representation of C(M) by multiplication operators, and we consider an unbounded operator D inL2(M,E) with compact resolvent (e.g. the signature operator), such that the commutators [D,f] are bounded whenever f is smooth. A recent deep theorem[2] states that M as a Riemannian manifold can be recovered from this data.
This suggests that one might define a noncommutative Riemannian manifold as a spectral triple (A,H,D), consisting of a representation of a C*-algebra A on a Hilbert space H, together with an unbounded operator D onH, with compact resolvent, such that [D,a] is bounded for all a in some dense subalgebra of A. Research in spectral triples is very active, and many examples of noncommutative manifolds have been constructed.
Noncommutative affine and projective schemes[edit]
In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects.
There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a Serre's theorem on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition ofnoncommutative projective geometry by Michael Artin and J. J. Zhang,[3] who add also some general ring-theoretic conditions (e.g. Artin-Schelter regularity).
Many properties of projective schemes extend to this context. For example, there exist an analog of the celebrated Serre duality for noncommutative projective schemes of Artin and Zhang.[4]
A. L. Rosenberg has created a rather general relative concept ofnoncommutative quasicompact scheme (over a base category), abstracting the Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors.[5] There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra.[6]
Invariants for noncommutative spaces[edit]
Some of the motivating questions of the theory are concerned with extending known topological invariants to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of the Alain Connes' direction in noncommutative geometry is his discovery (and independently by Boris Tsygan) of a new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the cyclic homology and its relations to the algebraic K-theory (primarily via Connes-Chern character map).
The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator K-theory andcyclic cohomology. Several generalizations of now classical index theoremsallow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical Chern character.
Examples of noncommutative spaces[edit]
[/ltr][/size]




  • The noncommutative torus, deformation of the function algebra of the ordinary torus, can be given the structure of a spectral triple. This class of examples has been studied intensively and still functions as a test case for more complicated situations.







  • Examples related to dynamical systems arising from number theory, such as the Gauss shift on continued fractions, give rise to noncommutative algebras that appear to have interesting noncommutative geometries.

[size][ltr]
See also[edit]
[/ltr][/size]
[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Alain Connes, Michael R. Douglas, Albert Schwarz, Noncommutative geometry and matrix theory: compactification on tori. J. High Energy Phys. 1998, no. 2, Paper 3, 35 pp. doihep-th/9711162
  2. Jump up^ Connes, Alain, On the spectral characterization of manifolds,arXiv:0810.2088v1
  3. Jump up^ M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228--287, doi
  4. Jump up^ Amnon Yekutieli, James J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125, n. 3, 1997, 697-707,pdf
  5. Jump up^ A. L. Rosenberg, Noncommutative schemes, Compositio Math. 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvipsMSRI lecture Noncommutative schemes and spaces (Feb 2000): video
  6. Jump up^ Freddy van Oystaeyen, Algebraic geometry for associative algebras,ISBN 0-8247-0424-X - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics , 232); F. van Oystaeyen, L. Willaert, Grothendieck topology, coherent sheaves and Serre's theorem for schematic algebras, J. Pure Appl. Alg. 104 (1995), p. 109--122
  7. Jump up^ H. S. Snyder, Quantized Space-Time, Phys. Rev. 71 (1947) 38

[size][ltr]
References[edit]
[/ltr][/size]
[size][ltr]
Further reading[edit]
[/ltr][/size]
[size][ltr]
External links[edit]
[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:49

Modular form

From Wikipedia, the free encyclopedia
  (Redirected from Modular forms)

[ltr]"Modular function" redirects here. A distinct use of this term appears in relation to Haar measure.
In mathematics, a modular form is a (complex) analytic function on theupper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs tocomplex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology and string theory.
modular function is a modular form invariant with respect to the modular group but without the condition that f(z) be holomorphic at infinity. Instead, modular functions are meromorphic at infinity.
Modular form theory is a special case of the more general theory ofautomorphic forms, and therefore can now be seen as just the most concrete part of a rich theory of discrete groups.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Modular forms for SL2(Z)[edit]
A modular form of weight k for the modular group
Quantum Field Theory II - 页 2 31d1f52ed616fb50b1ec9ca85b7b4171
is a complex-valued function f on the upper half-planeH = {z ∈ CIm(z) > 0}, satisfying the following three conditions: firstly, f is aholomorphic function on H. Secondly, for any z in H and any matrix in SL(2,Z) as above, the equation
Quantum Field Theory II - 页 2 E7faf3d45cc6f6db6868fd51331fc2d4
is required to hold. Thirdly, f is required to be holomorphic as z → i. The latter condition is also phrased by saying that f is "holomorphic at the cusp", a terminology that is explained below. The weight k is typically a positive integer.
The second condition, with the matrices Quantum Field Theory II - 页 2 7f353095081940698b4151fb587a1943 and Quantum Field Theory II - 页 2 6ea7ac2c434b0a68d858a594efc3bfbe reads
Quantum Field Theory II - 页 2 5295f7ee2fe5e9fafc1e56f3506239cf
and
Quantum Field Theory II - 页 2 80d4c62e7e160f921f54b94cd4176d6e
respectively. Since S and T generate the modular group SL(2,Z), the second condition above is equivalent to these two equations. Note that since
Quantum Field Theory II - 页 2 8e386c10f3a54070a243ac80d92dcba5,
modular forms are periodic functions, with period 1, and thus have aFourier series.
Note that for odd k, only the zero function can satisfy the second condition.
Definition in terms of lattices or elliptic curves[edit]
A modular form can equivalently be defined as a function F from the set oflattices in C to the set of complex numbers which satisfies certain conditions:
(1) If we consider the lattice Quantum Field Theory II - 页 2 F13cdd301ff1449d8df200062838a2d7 generated by a constant α and a variable z, then F(Λ) is an analytic function of z.(2) If α is a non-zero complex number and αΛ is the lattice obtained by multiplying each element of Λ by α, then F(αΛ) = αkF(Λ) where k is a constant (typically a positive integer) called the weight of the form.(3) The absolute value of F(Λ) remains bounded above as long as the absolute value of the smallest non-zero element in Λ is bounded away from 0.
The key idea in proving the equivalence of the two definitions is that such a function F is determined, because of the first property, by its values on lattices of the form Quantum Field Theory II - 页 2 5ab586213444d6ee4a11787e809543f2, where ω ∈ H.
Modular functions[edit]
When the weight k is zero, the only modular forms are constant functions, as can be shown. However, relaxing the requirement that f be holomorphic leads to the notion of modular functions. A function f : H → C is called modular iff it satisfies the following properties:
[/ltr][/size]

  1. f is meromorphic in the open upper half-plane H.
  2. For every matrix Quantum Field Theory II - 页 2 C78ecacdd219a4ddc60fa8cf517a8fc1 in the modular group ΓQuantum Field Theory II - 页 2 Ea10d46d1b743439efa7708b1387d59a.
  3. As pointed out above, the second condition implies that f is periodic, and therefore has a Fourier series. The third condition is that this series is of the form Quantum Field Theory II - 页 2 7c43063a1b7970b883c1f8f87dba9ab3 It is often written in terms of Quantum Field Theory II - 页 2 1f639c06103efa0ed2f674d5b96ca127 (the square of the nome), as:

[size][ltr]
Quantum Field Theory II - 页 2 B18af85efb7fc4f37190d734e23f3764
This is also referred to as the q-expansion[1] of f. The coefficients Quantum Field Theory II - 页 2 9ded7825070b255e7bc092cdc2c8e98a are known as the Fourier coefficients of f, and the number m is called the order of the pole of f at i∞. This condition is called "meromorphic at the cusp", meaning that only finitely many negative-n coefficients are non-zero, so the q-expansion is bounded below, guaranteeing that it is meromorphic at q=0. [2]
Another way to phrase the definition of modular functions is to use elliptic curves: every lattice Λ determines an elliptic curve C/Λ over C; two lattices determine isomorphic elliptic curves if and only if one is obtained from the other by multiplying by some non-zero complex number α. Thus, a modular function can also be regarded as a meromorphic function on the set of isomorphism classes of elliptic curves. For example, the j-invariant j(z) of an elliptic curve, regarded as a function on the set of all elliptic curves, is a modular function. More conceptually, modular functions can be thought of as functions on the moduli space of isomorphism classes of complex elliptic curves.
A modular form f that vanishes at q = 0 (equivalently, a0 = 0, also paraphrased as z = i∞) is called a cusp form (Spitzenform in German). The smallest n such that an ≠ 0 is the order of the zero of f at i∞.
modular unit is a modular function whose poles and zeroes are confined to the cusps.[3]
Modular forms for more general groups[edit]
The functional equation, i.e., the behavior of f with respect to Quantum Field Theory II - 页 2 98c60e340a722ca8ad69d6dbe67d9bd5 can be relaxed by requiring it only for matrices in smaller groups.
The Riemann su***ce G\H[edit]
Let G be a subgroup of SL(2,Z) that is of finite index. Such a group G actson H in the same way as SL(2,Z). The quotient topological space G\H can be shown to be a Hausdorff space. Typically it is not compact, but can be compactified by adding a finite number of points called cusps. These are points at the boundary of H, i.e., either in Q, the rationals, or ∞, such that there is a parabolic element of G (a matrix with trace ±2) fixing the point. Here, a matrix Quantum Field Theory II - 页 2 A5494cfd8095baabde7c4495ed3eccbd sends ∞ to a/c. This yields a compact topological space G\H. What is more, it can be endowed with the structure of aRiemann su***ce, which allows one to speak of holo- and meromorphic functions.
Important examples are, for any positive integer N, either one of thecongruence subgroups
Quantum Field Theory II - 页 2 0546339faab01ef3cd32d6bd4e4bc167
and
Quantum Field Theory II - 页 2 728e0b714a69c8e8601c872c9753b74d
For G = Γ0(N) or Γ(N), the spaces G\H and G\H are denoted Y0(N) andX0(N) and Y(N), X(N), respectively.
The geometry of G\H can be understood by studying fundamental domains for G, i.e. subsets D ⊂ H such that D intersects each orbit of theG-action on H exactly once and such that the closure of D meets all orbits. For example, the genus of G\H can be computed.[4]
Definition[edit]
A modular form for G of weight k is a function on H satisfying the above functional equation for all matrices in G, that is holomorphic on H and at all cusps of G. Again, modular forms that vanish at all cusps are called cusp forms for G. The C-vector spaces of modular and cusp forms of weight kare denoted Mk(G) and Sk(G), respectively. Similarly, a meromorphic function on G\H is called a modular function for G. In case G = Γ0(N), they are also referred to as modular/cusp forms and functions of level N. For G = Γ(1) = SL2(Z), this gives back the afore-mentioned definitions.
Consequences[edit]
The theory of Riemann su***ces can be applied to G\H to obtain further information about modular forms and functions. For example, the spacesMk(G) and Sk(G) are finite-dimensional, and their dimensions can be computed thanks to the Riemann-Roch theorem in terms of the geometry of the G-action on H.[5] For example,
Quantum Field Theory II - 页 2 Eb3cbc183547c42217414b41227b8c1e
where Quantum Field Theory II - 页 2 992067556595867449d479c5e29b62fe denotes the floor function.
The modular functions constitute the field of functions of the Riemann su***ce, and hence form a field of transcendence degree one (over C). If a modular function f is not identically 0, then it can be shown that the number of zeroes of f is equal to the number of poles of f in the closure of thefundamental region RΓ.It can be shown that the field of modular function of level N (N ≥ 1) is generated by the functions j(z) and j(Nz).[6]
Line bundles[edit]
The situation can be profitably compared to that which arises in the search for functions on the projective space P(V): in that setting, one would ideally like functions F on the vector space V which are polynomial in the coordinates of v ≠ 0 in V and satisfy the equation F(cv) = F(v) for all non-zero c. Unfortunately, the only such functions are constants. If we allow denominators (rational functions instead of polynomials), we can let F be the ratio of two homogeneous polynomials of the same degree. Alternatively, we can stick with polynomials and loosen the dependence onc, letting F(cv) = ckF(v). The solutions are then the homogeneous polynomials of degree k. On the one hand, these form a finite dimensional vector space for each k, and on the other, if we let k vary, we can find the numerators and denominators for constructing all the rational functions which are really functions on the underlying projective space P(V).
One might ask, since the homogeneous polynomials are not really functions on P(V), what are they, geometrically speaking? The algebro-geometric answer is that they are sections of a sheaf (one could also say aline bundle in this case). The situation with modular forms is precisely analogous.
Modular forms can also be profitably approached from this geometric direction, as sections of line bundles on the moduli space of elliptic curves.
Miscellaneous[edit]
Entire forms[edit]
If f is holomorphic at the cusp (has no pole at q = 0), it is called an entire modular form.
If f is meromorphic but not holomorphic at the cusp, it is called a non-entire modular form. For example, the j-invariant is a non-entire modular form of weight 0, and has a simple pole at i∞.
Automorphic factors and other generalizations[edit]
Other common generalizations allow the weight k to not be an integer, and allow a multiplier Quantum Field Theory II - 页 2 30a86bf6d6cbf60fb716856250ae55d0 with Quantum Field Theory II - 页 2 2167b9b6966c336a4972cdbab9322993 to appear in the transformation, so that
Quantum Field Theory II - 页 2 E4509156111a935bdef652e5404f8dd6
Functions of the form Quantum Field Theory II - 页 2 D427ac74bc824cb378896af29f1a08e6 are known as automorphic factors.
Functions such as the Dedekind eta function, a modular form of weight 1/2, may be encompassed by the theory by allowing automorphic factors. Thus, for example, let χ be a Dirichlet character mod N. A modular form of weight k, level N (or level group Quantum Field Theory II - 页 2 56a9b975e8614a9594b4292d6e57e89f) with nebentypus χ is aholomorphic function f on the upper half-plane such that for any
Quantum Field Theory II - 页 2 1fb8a7c59099f8e2d8ae2c744430f50e
and any z in the upper half-plane, we have
Quantum Field Theory II - 页 2 F445912f5c41eefeebd940195bbd420c
and f is holomorphic at all the cusps; when the form vanishes at all cusps, it is called a cusp form.
Examples[edit]
The simplest examples from this point of view are the Eisenstein series. For each even integer k > 2, we define Ek(Λ) to be the sum of λk over all non-zero vectors λ of Λ:
Quantum Field Theory II - 页 2 Ed6cacbc7fabf472524e4ceeedcf93ac
The condition k > 2 is needed for convergence; for odd k there is cancellation between λk and (−λ)k, so that such series are identically zero.
An even unimodular lattice L in Rn is a lattice generated by n vectors forming the columns of a matrix of determinant 1 and satisfying the condition that the square of the length of each vector in L is an even integer. As a consequence of the Poisson summation formula, the theta function
Quantum Field Theory II - 页 2 52deb52414cbba07589de7be18de5d58
is a modular form of weight n/2. It is not so easy to construct even unimodular lattices, but here is one way: Let n be an integer divisible by 8 and consider all vectors v in Rn such that 2v has integer coordinates, either all even or all odd, and such that the sum of the coordinates of v is an even integer. We call this lattice Ln. When n = 8, this is the lattice generated by the roots in the root system called E8. Because there is only one modular form of weight 8 up to scalar multiplication,
Quantum Field Theory II - 页 2 F3cad3f1f24d30a4a5e9a8f174bc086d
even though the lattices L8×L8 and L16 are not similar. John Milnorobserved that the 16-dimensional tori obtained by dividing R16 by these two lattices are consequently examples of compact Riemannian manifoldswhich are isospectral but not isometric (see Hearing the shape of a drum.)
The Dedekind eta function is defined as
Quantum Field Theory II - 页 2 3384938c3e6a5b8f3bdb18f8e87c8074
Then the modular discriminant Δ(z) = η(z)24 is a modular form of weight 12. The presence of 24 can be connected to the Leech lattice, which has 24 dimensions. A celebrated conjecture of Ramanujan asserted that the qpcoefficient for any prime p has absolute value ≤2p11/2. This was settled byPierre Deligne as a result of his work on the Weil conjectures.
The second and third examples give some hint of the connection between modular forms and classical questions in number theory, such as representation of integers by quadratic forms and the partition function. The crucial conceptual link between modular forms and number theory are furnished by the theory of Hecke operators, which also gives the link between the theory of modular forms and representation theory.
Generalizations[edit]
There are a number of other usages of the term modular function, apart from this classical one; for example, in the theory of Haar measures, it is a function Δ(g) determined by the conjugation action.
Maass forms are real-analytic eigenfunctions of the Laplacian but need not be holomorphic. The holomorphic parts of certain weak Maass wave forms turn out to be essentially Ramanujan's mock theta functions. Groups which are not subgroups of SL(2,Z) can be considered.
Hilbert modular forms are functions in n variables, each a complex number in the upper half-plane, satisfying a modular relation for 2×2 matrices with entries in a totally real number field.
Siegel modular forms are associated to larger symplectic groups in the same way in which the forms we have discussed are associated to SL(2,R); in other words, they are related to abelian varieties in the same sense that our forms (which are sometimes called elliptic modular forms to emphasize the point) are related to elliptic curves.
Jacobi forms are a mixture of modular forms and elliptic functions. Examples of such functions are very classical - the Jacobi theta functions and the Fourier coefficients of Siegel modular forms of genus two - but it is a relatively recent observation that the Jacobi forms have an arithmetic theory very analogous to the usual theory of modular forms.
Automorphic forms extend the notion of modular forms to general Lie groups.
History[edit]
The theory of modular forms was developed in three or four periods: first in connection with the theory of elliptic functions, in the first part of the nineteenth century; then by Felix Klein and others towards the end of the nineteenth century as the automorphic form concept became understood (for one variable); then by Erich Hecke from about 1925; and then in the 1960s, as the needs of number theory and the formulation of themodularity theorem in particular made it clear that modular forms are deeply implicated.
The term modular form, as a systematic description, is usually attributed to Hecke.
Notes[edit]
[/ltr][/size]

  1. Jump up^ Elliptic and Modular Functions

  2. Jump up^ A meromorphic function can only have a finite number of negative-exponent terms in its Laurent series, its q-expansion. It can only have at most a pole at q=0, not an essential singularity as exp(1/q) has.

  3. Jump up^ Kubert, Daniel S.Lang, Serge (1981), Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] 244, Berlin, New York: Springer-Verlag, p. 24,ISBN 978-0-387-90517-4Zbl 0492.12002MR 648603

  4. Jump up^ Gunning, Robert C. (1962), Lectures on modular forms, Annals of Mathematics Studies 48Princeton University Press, p. 13

  5. Jump up^ Shimura, Goro (1971), Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan11, Tokyo: Iwanami Shoten, Theorem 2.33, Proposition 2.26

  6. Jump up^ Milne, James (2010), Modular Functions and Modular Forms, Theorem 6.1.


[size][ltr]
References[edit]
[/ltr][/size]

  • Jean-Pierre SerreA Course in Arithmetic. Graduate Texts in Mathematics 7, Springer-Verlag, New York, 1973. Chapter VII provides an elementary introduction to the theory of modular forms.
  • Tom M. ApostolModular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. ISBN 0-387-97127-0
  • Goro ShimuraIntroduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, N.J., 1971. Provides a more advanced treatment.
  • Stephen Gelbart, Automorphic forms on adele groupsAnnals of Mathematics Studies 83, Princeton University Press, Princeton, N.J., 1975. Provides an introduction to modular forms from the point of view of representation theory.
  • Robert A. Rankin, Modular forms and functions, (1977) Cambridge University Press, Cambridge. ISBN 0-521-21212-X
  • Stein's notes on Ribet's course Modular Forms and Hecke Operators
  • Erich HeckeMathematische Werke, Goettingen, Vandenhoeck & Ruprecht, 1970.
  • N.P. Skoruppa, D. ZagierJacobi forms and a certain space of modular formsInventiones Mathematicae, 1988, Springer


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:51

Moduli space

From Wikipedia, the free encyclopedia
  (Redirected from Moduli spaces)

[ltr]In algebraic geometry, a moduli space is a geometric space (usually ascheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Motivation[edit]
Moduli spaces classify geometric objects. Given a class of thing (such as lines, su***ces, or elliptic curves), moduli spaces say which things are considered isomorphic ("the same for present purposes") and how the things can modulate (vary) throughout the family.
[/ltr][/size]
Quantum Field Theory II - 页 2 Page1-220px-Real_projective_line_moduli_space_example.pdf
Quantum Field Theory II - 页 2 Magnify-clip
Constructing P1(R) by varying 0 ≤ θ < π or as a quotient space of S1.
[size][ltr]
As a motivating example, consider how to describe the collection of lines in R2 which intersect the origin. We want to assign a quantity, a modulus, to each line Lof this family that can uniquely identify it, for example a positive angle θ(L) with 0 ≤ θ < π radians, which will yield all lines in R2 which intersect the origin. The set of lines L just constructed is known as P1(R) and is called the real projective line.
We can also describe the collection of lines in R2 that intersect the origin by means of a topological construction. That is, consider S1 ⊂ R2 and notice that to every point s ∈ S1 that we can identify a line L(s) in the collection if the line intersects the origin and s. Yet, this map is two-to-one, so we want to identify s ~ −s to yield P1(R) ≅ S1/~ where the topology on this space is the quotient topology induced by the quotient map S1 →P1(R).
Thus, when we consider P1(R) as a moduli space of lines that intersect the origin in R2, we capture the ways in which the members of the family (lines in the case) can modulate by continuously varying 0 ≤ θ < π.
Basic examples[edit]
Projective space and Grassmannians[edit]
The real projective space Pn is a moduli space which parametrizes the space of lines in Rn+1 which pass through the origin. Similarly, complex projective space is the space of all complex lines in Cn+1 passing through the origin.
More generally, the Grassmannian G(kV) of a vector space V over a fieldF is the moduli space of all k-dimensional linear subspaces of V.
Chow variety[edit]
The Chow variety Chow(d,P3) is a projective algebraic variety which parametrizes degree d curves in P3. It is constructed as follows. Let C be a curve of degree d in P3, then consider all the lines in P3 that intersect the curve C. This is a degree d divisor D_C in G(24) the Grassmannian of lines in P3. When C varies, by associating C to D_C, we obtain a parameter space of degree d curves as a subset of the space of degree ddivisors of the Grassmannian: Chow(d,P3).
Hilbert scheme[edit]
The Hilbert scheme Hilb(X) is a moduli scheme. Every closed point ofHilb(X) corresponds to a closed subscheme of a fixed scheme X, and every closed subscheme is represented by such a point.
Definitions[edit]
There are several different related notions of things we could call moduli spaces. Each of these definitions formalizes a different notion of what it means for the points of a space M to represent geometric objects.
Fine moduli spaces[edit]
This is the standard concept. Heuristically, if we have a space M for which each point m∈ M corresponds to an algebro-geometric object Um, then we can assemble these objects into a topological family U over M. (For example, the Grassmannian G(kV) carries a rank k bundle whose fiber at any point [L] ∈ G(kV) is simply the linear subspace L ⊂ V.) M is called abase space of the family U. We say that such a family is universal if any family of algebro-geometric objects T over any base space B is thepullback of U along a unique map B → M. A fine moduli space is a spaceM which is the base of a universal family.
More precisely, suppose that we have a functor F from schemes to sets, which assigns to a scheme B the set of all suitable families of objects with base B. A space M is a fine moduli space for the functor F if Mcorepresents F, i.e., there is a natural isomorphism τ : F → Hom(−, M), where Hom(−, M) is the functor of points. This implies that M carries a universal family; this family is the family on M corresponding to the identity map 1M ∈ Hom(MM).
Coarse moduli spaces[edit]
Fine moduli spaces are very useful, but they do not always exist and are frequently difficult to construct, so mathematicians sometimes use a weaker notion, the idea of a coarse moduli space. A space M is a coarse moduli space for the functor F if there exists a natural transformation τ : F→ Hom(−, M) and τ is universal among such natural transformations. More concretely, M is a coarse moduli space for F if any family T over a base Bgives rise to a map φT : B → M and any two objects V and W (regarded as families over a point) correspond to the same point of M if and only if Vand W are isomorphic. Thus, M is a space which has a point for every object that could appear in a family, and whose geometry reflects the ways objects can vary in families. Note, however, that a coarse moduli space does not necessarily carry any family of appropriate objects, let alone a universal one.
In other words, a fine moduli space includes both a base space M and universal family T → M, while a coarse moduli space only has the base space M.
Moduli stacks[edit]
It is frequently the case that interesting geometric objects come equipped with lots of natural automorphisms. This in particular makes the existence of a fine moduli space impossible (intuitively, the idea is that if L is some geometric object, the trivial family L × [0,1] can be made into a twisted family on the circle S1 by identifying L × {0} with L × {1} via a nontrivial automorphism. Now if a fine moduli space X existed, the map S1 → Xshould not be constant, but would have to be constant on any proper open set by triviality), one can still sometimes obtain a coarse moduli space. However, this approach is not ideal, as such spaces are not guaranteed to exist, are frequently singular when they do exist, and miss details about some non-trivial families of objects they classify.
A more sophisticated approach is to enrich the classification by remembering the isomorphisms. More precisely, on any base B one can consider the category of families on B with only isomorphisms between families taken as morphisms. One then considers the fibred category which assigns to any space B the groupoid of families over B. The use of thesecategories fibred in groupoids to describe a moduli problem goes back to Grothendieck (1960/61). In general they cannot be represented by schemes or even algebraic spaces, but in many cases they have a natural structure of an algebraic stack.
Algebraic stacks and their use to analyse moduli problems appeared in Deligne-Mumford (1969) as a tool to prove the irreducibility of the (coarse)moduli space of curves of a given genus. The language of algebraic stacks essentially provides a systematic way to view the fibred category that constitutes the moduli problem as a "space", and the moduli stack of many moduli problems is better-behaved (such as smooth) than the corresponding coarse moduli space.
Further examples[edit]
Moduli of curves[edit]
For more details on this topic, see Moduli of algebraic curves.
The moduli stack Quantum Field Theory II - 页 2 C69393e9036d3898e567bae532b1e2a7 classifies families of smooth projective curves of genus g, together with their isomorphisms. When g > 1, this stack may be compactified by adding new "boundary" points which correspond to stable nodal curves (together with their isomorphisms). A curve is stable if it has only a finite group of automorphisms. The resulting stack is denoted Quantum Field Theory II - 页 2 80e71b0d6b05b917cce3b595c91c4945. Both moduli stacks carry universal families of curves. One can also define coarse moduli spaces representing isomorphism classes of smooth or stable curves. These coarse moduli spaces were actually studied before the notion of moduli stack was invented. In fact, the idea of a moduli stack was invented by Deligne and Mumford in an attempt to prove the projectivity of the coarse moduli spaces. In recent years, it has become apparent that the stack of curves is actually the more fundamental object.
Both stacks above have dimension 3g−3; hence a stable nodal curve can be completely specified by choosing the values of 3g−3 parameters, wheng > 1. In lower genus, one must account for the presence of smooth families of automorphisms, by subtracting their number. There is exactly one complex curve of genus zero, the Riemann sphere, and its group of isomorphisms is PGL(2). Hence the dimension of Quantum Field Theory II - 页 2 10befaea156341a63a6a0777ac7ed5ee is
dim(space of genus zero curves) - dim(group of automorphisms) = 0 − dim(PGL(2)) = −3.
Likewise, in genus 1, there is a one-dimensional space of curves, but every such curve has a one-dimensional group of automorphisms. Hence the stack Quantum Field Theory II - 页 2 9d703acb4993f7e1550520e58e20e1b7 has dimension 0. The coarse moduli spaces have dimension 3g-3 as the stacks when g > 1 because the curves with genus g > 1 have only a finite group as its automorphism i.e. dim(group of automorphisms) = 0. Eventually, in genus zero the coarse moduli space has dimension zero, and in genus one, it has dimension one.
One can also enrich the problem by considering the moduli stack of genusg nodal curves with n marked points. Such marked curves are said to be stable if the subgroup of curve automorphisms which fix the marked points is finite. The resulting moduli stacks of smooth (or stable) genus g curves with n-marked points are denoted Quantum Field Theory II - 页 2 5c97f31df8e9cd104ca2f8a41dc4d8c7 (or Quantum Field Theory II - 页 2 73a90941a2126e4bb2544b2b28f51d56), and have dimension 3g−3+n.
A case of particular interest is the moduli stack Quantum Field Theory II - 页 2 52d7312a1e5cd4192c1a8d42125fc5e3 of genus 1 curves with one marked point. This is the stack of elliptic curves, and is the natural home of the much studied modular forms, which are meromorphic sections of bundles on this stack.
Moduli of varieties[edit]
In higher dimensions, moduli of algebraic varieties are more difficult to construct and study. For instance, the higher-dimensional analogue of the moduli space of elliptic curves discussed above is the moduli space of abelian varieties. This is the problem underlying Siegel modular formtheory. See also Shimura variety.
Moduli of vector bundles[edit]
Another important moduli problem is to understand the geometry of (various substacks of) the moduli stack Vectn(X) of rank n vector bundleson a fixed algebraic variety X. This stack has been most studied when X is one-dimensional, and especially when n equals one. In this case, the coarse moduli space is the Picard scheme, which like the moduli space of curves, was studied before stacks were invented. Finally, when the bundles have rank 1 and degree zero, the study of the coarse moduli space is the study of the Jacobian variety.
In applications to physics, the number of moduli of vector bundles and the closely related problem of the number of moduli of principal G-bundles has been found to be significant in gauge theory.[citation needed]
Methods for constructing moduli spaces[edit]
The modern formulation of moduli problems and definition of moduli spaces in terms of the moduli functors (or more generally the categories fibred in groupoids), and spaces (almost) representing them, dates back to Grothendieck (1960/61), in which he described the general framework, approaches and main problems using Teichmüller spaces in complex analytical geometry as an example. The talks in particular describe the general method of constructing moduli spaces by first rigidifying the moduli problem under consideration.
More precisely, the existence of non-trivial automorphisms of the objects being classified makes it impossible to have a fine moduli space. However, it is often possible to consider a modified moduli problem of classifying the original objects together with additional data, chosen in such a way that the identity is the only automorphism respecting also the additional data. With a suitable choice of the rigidifying data, the modified moduli problem will have a (fine) moduli space T, often described as a subscheme of a suitable Hilbert scheme or Quot scheme. The rigidifying data is moreover chosen so that it corresponds to a principal bundle with an algebraic structure group G. Thus one can move back from the rigidified problem to the original by taking quotient by the action of G, and the problem of constructing the moduli space becomes that of finding a scheme (or more general space) that is (in a suitably strong sense) the quotient T/G of T by the action of G. The last problem in general does not admit a solution; however, it is addressed by the groundbreaking geometric invariant theory(GIT), developed by David Mumford in 1965, which shows that under suitable conditions the quotient indeed exists.
To see how this might work, consider the problem of parametrizing smooth curves of genus g > 2. A smooth curve together with a complete linear system of degree d > 2g is equivalent to a closed one dimensional subscheme of the projective space Pd−g. Consequently, the moduli space of smooth curves and linear systems (satisfying certain criteria) may be embedded in the Hilbert scheme of a sufficiently high-dimensional projective space. This locus H in the Hilbert scheme has an action of PGL(n) which mixes the elements of the linear system; consequently, the moduli space of smooth curves is then recovered as the quotient of H by the projective general linear group.
Another general approach is primarily associated with Michael Artin. Here the idea is to start with any object of the kind to be classified and study itsdeformation theory. This means first constructing infinitesimaldeformations, then appealing to prorepresentability theorems to put these together into an object over a formal base. Next an appeal toGrothendieck's formal existence theorem provides an object of the desired kind over a base which is a complete local ring. This object can be approximated via Artin's approximation theorem by an object defined over a finitely generated ring. The spectrum of this latter ring can then be viewed as giving a kind of coordinate chart on the desired moduli space. By gluing together enough of these charts, we can cover the space, but the map from our union of spectra to the moduli space will in general be many to one. We therefore define an equivalence relation on the former; essentially, two points are equivalent if the objects over each are isomorphic. This gives a scheme and an equivalence relation, which is enough to define an algebraic space (actually an algebraic stack if we are being careful) if not always a scheme.
In physics[edit]
For more details on this topic, see moduli (physics).
The term moduli space is sometimes used in physics to refer specifically to the moduli space of vacuum expectation values of a set of scalar fields, or to the moduli space of possible string backgrounds.
Moduli spaces also appear in physics in cohomological field theory, where one can use Feynman path integrals to compute the intersection numbersof various algebraic moduli spaces.
References[edit]

[/ltr][/size]




  • Mumford, David; Fogarty, J.; Kirwan, F. Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. MR 1304906 ISBN 3-540-56963-4



  • Papadopoulos, Athanase, ed. (2007), Handbook of Teichmüller theory. Vol. I, IRMA Lectures in Mathematics and Theoretical Physics, 11, European Mathematical Society (EMS), Zürich, doi:10.4171/029,ISBN 978-3-03719-029-6, MR2284826



  • Papadopoulos, Athanase, ed. (2009), Handbook of Teichmüller theory. Vol. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, European Mathematical Society (EMS), Zürich, doi:10.4171/055,ISBN 978-3-03719-055-5, MR2524085



  • Papadopoulos, Athanase, ed. (2012), Handbook of Teichmüller theory. Vol. III, IRMA Lectures in Mathematics and Theoretical Physics, 17, European Mathematical Society (EMS), Zürich, doi:10.4171/103,ISBN 978-3-03719-103-3.













[size][ltr]
External links[edit]
[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-13, 14:53

Quantum cohomology

From Wikipedia, the free encyclopedia




[ltr]In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called smalland big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring (typically a Novikov ring, described below) significantly affects its structure, as well.
While the cup product of ordinary cohomology describes how submanifolds of the manifold intersect each other, the quantum cup product of quantum cohomology describes how subspaces intersect in a "fuzzy", "quantum" way. More precisely, they intersect if they are connected via one or more pseudoholomorphic curvesGromov–Witten invariants, which count these curves, appear as coefficients in expansions of the quantum cup product.
Because it expresses a structure or pattern for Gromov–Witten invariants, quantum cohomology has important implications for enumerative geometry. It also connects to many ideas in mathematical physics andmirror symmetry. In particular, it is ring-isomorphic to Floer homology.
Throughout this article, X is a closed symplectic manifold with symplectic form ω.[/ltr]



[ltr]Contents
  [hide[/ltr]




[ltr]

Novikov ring[edit]
See also: Novikov ring
Various choices of coefficient ring for the quantum cohomology of X are possible. Usually a ring is chosen that encodes information about the second homology of X. This allows the quantum cup product, defined below, to record information about pseudoholomorphic curves in X. For example, let
Quantum Field Theory II - 页 2 116de62b172f0ae8c0441445dff43d5b
be the second homology modulo its torsion. Let R be any commutative ring with unit and Λ the ring of formal power series of the form
Quantum Field Theory II - 页 2 C1b9ee5c4dfa7a042f568f2cb79e6f23
where[/ltr]


  • the coefficients Quantum Field Theory II - 页 2 50993f0954c9a92f2f96adfb822b73a0 come from R,
  • the Quantum Field Theory II - 页 2 5287717f52d5ed80738a8782f23617e1 are formal variables subject to the relation Quantum Field Theory II - 页 2 5e21d63f659aa59f1682a918beeacd9e,
  • for every real number C, only finitely many A with ω(A) less than or equal to C have nonzero coefficients Quantum Field Theory II - 页 2 50993f0954c9a92f2f96adfb822b73a0.


[ltr]
The variable Quantum Field Theory II - 页 2 5287717f52d5ed80738a8782f23617e1 is considered to be of degree Quantum Field Theory II - 页 2 5fd8b0118ac486eadd83d8ac4246248c, where Quantum Field Theory II - 页 2 0bd1ecc6359ce275e3a626020b904c8c is the first Chern class of the tangent bundle TX, regarded as a complex vector bundle by choosing any almost complex structure compatible with ω. Thus Λ is a graded ring, called the Novikov ring for ω. (Alternative definitions are common.)
Small quantum cohomology[edit]
Let
Quantum Field Theory II - 页 2 D87523da58677289a76bc9851aa87419
be the cohomology of X modulo torsion. Define the small quantum cohomology with coefficients in Λ to be
Quantum Field Theory II - 页 2 995e84f0a1e5b3694a0e8843713bd2f2
Its elements are finite sums of the form
Quantum Field Theory II - 页 2 De37829626a429e073c3e16a329aae22
The small quantum cohomology is a graded R-module with
Quantum Field Theory II - 页 2 2a88cf0e3e53e3867631d0b8c9142e41
The ordinary cohomology H*(X) embeds into QH*(X, Λ) via Quantum Field Theory II - 页 2 33f7dd565e6d798313fdf198e916168b, and QH*(X, Λ) is generated as a Λ-module by H*(X).
For any two cohomology classes ab in H*(X) of pure degree, and for anyA in Quantum Field Theory II - 页 2 7506afb5be7ea172868cecd710211e7d, define (ab)A to be the unique element of H*(X) such that
Quantum Field Theory II - 页 2 F0274978fb0918bf1896b5702f6d1fa7
(The right-hand side is a genus-0, 3-point Gromov–Witten invariant.) Then define
Quantum Field Theory II - 页 2 11ea1200841bffd486fe09ecd4a72b44
This extends by linearity to a well-defined Λ-bilinear map
Quantum Field Theory II - 页 2 5f206e54f42375c165d1abeffbf216d9
called the small quantum cup product.
Geometric interpretation[edit]
The only pseudoholomorphic curves in class A = 0 are constant maps, whose images are points. It follows that
Quantum Field Theory II - 页 2 190d471ac0224685205ab43bb29fbec8
in other words,
Quantum Field Theory II - 页 2 B7b69c7ea58d54959fc2f01d80cb48dd
Thus the quantum cup product contains the ordinary cup product; it extends the ordinary cup product to nonzero classes A.
In general, the Poincaré dual of (ab)A corresponds to the space of pseudoholomorphic curves of class A passing through the Poincaré duals of a and b. So while the ordinary cohomology considers a and b to intersect only when they meet at one or more points, the quantum cohomology records a nonzero intersection for a and b whenever they are connected by one or more pseudoholomorphic curves. The Novikov ring just provides a bookkeeping system large enough to record this intersection information for all classes A.
Example[edit]
Let X be the complex projective plane with its standard symplectic form (corresponding to the Fubini–Study metric) and complex structure. Let Quantum Field Theory II - 页 2 Dced419954bf88038169fbe730d7b5bf be the Poincaré dual of a line L. Then
Quantum Field Theory II - 页 2 79b4b9f07a8fcb7c9895c2a0e0a325e9
The only nonzero Gromov–Witten invariants are those of class A = 0 or AL. It turns out that
Quantum Field Theory II - 页 2 4071e7ac2e9ff304f61865e925e17e83
and
Quantum Field Theory II - 页 2 Cc9ef8540199eef269199346b2704661
where δ is the Kronecker delta. Therefore
Quantum Field Theory II - 页 2 889e8d40884ab7fb2a1afe8c99aeba18Quantum Field Theory II - 页 2 4996583b64ecab498a1c55e1f7deb632
In this case it is convenient to rename Quantum Field Theory II - 页 2 669f4aee23273c6662523a7f4dbd7fae as q and use the simpler coefficient ring Z[q]. This q is of degree Quantum Field Theory II - 页 2 C4d73cf0a6e230e5f02c47fe84e83d64. Then
Quantum Field Theory II - 页 2 29e26149ae57230cc157de24e9f7aa7a
Properties of the small quantum cup product[edit]
For ab of pure degree,
Quantum Field Theory II - 页 2 0e36f38b007000e7fe02a936c81537ad
and
Quantum Field Theory II - 页 2 Ab1cef7e9122c9463e994eafd3d4dadb
The small quantum cup product is distributive and Λ-bilinear. The identity element Quantum Field Theory II - 页 2 Ef0d99e45619d4a582833ece92d4d7a7 is also the identity element for small quantum cohomology.
The small quantum cup product is also associative. This is a consequence of the gluing law for Gromov–Witten invariants, a difficult technical result. It is tantamount to the fact that the Gromov–Witten potential (a generating function for the genus-0 Gromov–Witten invariants) satisfies a certain third-order differential equation known as the WDVV equation.
An intersection pairing
Quantum Field Theory II - 页 2 4e38334b3cc141c1cc83e3104de9f9d1
is defined by
Quantum Field Theory II - 页 2 3e67ae15453a1d88f93423699daf0f78
(The subscripts 0 indicate the A = 0 coefficient.) This pairing satisfies the associativity property
Quantum Field Theory II - 页 2 5f0b6fc5f41b883d7ad3c97877b7e96d
Dubrovin connection[edit]
When the base ring R is C, one can view the evenly-graded part H of the vector space QH*(X, Λ) as a complex manifold. The small quantum cup product restricts to a well-defined, commutative product on H. Under mild assumptions, H with the intersection pairing Quantum Field Theory II - 页 2 7dd06f859a9635d249d2d59b6139313a is then a Frobenius algebra.
The quantum cup product can be viewed as a connection on the tangent bundle TH, called the Dubrovin connection. Commutativity and associativity of the quantum cup product then correspond to zero-torsionand zero-curvature conditions on this connection.
Big quantum cohomology[edit]
There exists a neighborhood U of 0 ∈ H such that Quantum Field Theory II - 页 2 7dd06f859a9635d249d2d59b6139313a and the Dubrovin connection give U the structure of a Frobenius manifold. Any a in Udefines a quantum cup product
Quantum Field Theory II - 页 2 37da0caeb79e50a5c586b2e7175a5244
by the formula
Quantum Field Theory II - 页 2 Af2619890a6d6ecb5e5a7fb585145526
Collectively, these products on H are called the big quantum cohomology. All of the genus-0 Gromov–Witten invariants are recoverable from it; in general, the same is not true of the simpler small quantum cohomology.
Small quantum cohomology has only information of 3-point Gromov–Witten invariants, but the big quantum cohomology has of all (n ≧ 4) n-point Gromov–Witten invariants. To obtain enumerative geometrical information for some manifolds, we need to use big quantum cohomology. Small quantum cohomology would corresponds to 3-point correlation functions in physics while big quantum cohomology would corresponds to all of n-point correlation functions.
References[edit][/ltr]


  • McDuff, Dusa & Salamon, Dietmar (2004). J-Holomorphic Curves and Symplectic Topology, American Mathematical Society colloquium publications. ISBN 0-8218-3485-1.



  • Fulton, W; Pandharipande, R (1996). "Notes on stable maps and quantum cohomology". arXiv:alg-geom/9608011.



  • Piunikhin, Sergey; Salamon, Dietmar & Schwarz, Matthias (1996). Symplectic Floer–Donaldson theory and quantum cohomology. In C. B. Thomas (Ed.), Contact and Symplectic Geometry, pp. 171–200. Cambridge University Press. ISBN 0-521-57086-7





Frobenius manifold

From Wikipedia, the free encyclopedia
  (Redirected from Frobenius manifolds)

[ltr]In the mathematical field of differential geometry, a Frobenius manifold is a flat Riemannian manifold with a certain compatible multiplicative structure on the tangent space. The concept generalizes the notion of Frobenius algebra to tangent bundles. They were introduced by Dubrovin.[1]
Frobenius manifolds occur naturally in the subject of symplectic topology, more specifically quantum cohomology. The broadest definition is in the category of Riemannian supermanifolds. We will limit the discussion here to smooth (real) manifolds. A restriction to complex manifolds is also possible.

[/ltr]
[ltr]Contents
  [hide[/ltr]


[size][ltr]

Definition[edit]
Let M be a smooth manifold. An affine flat structure on M is a sheaf Tf of vector spaces that pointwisely span TM the tangent bundle and the tangent bracket of pairs of its sections vanishes.
As a local example consider the coordinate vectorfields over a chart of M. A manifold admits an affine flat structure if one can glue together such vectorfields for a covering family of charts.
Let further be given a Riemannian metric g on M. It is compatible to the flat structure if g(XY) is locally constant for all flat vector fields X and Y.
A Riemannian manifold admits a compatible affine flat structure if and only if its curvature tensor vanishes everywhere.
A family of commutative products * on TM is equivalent to a section A ofS2(T*M) ⊗ TM via
Quantum Field Theory II - 页 2 B7f9877f6819454a996afb20fcf118ad
We require in addition the property
Quantum Field Theory II - 页 2 E427ee00eb91715491a0f99f32a56d88
Therefore the composition g#A is a symmetric 3-tensor.
This implies in particular that a linear Frobenius manifold (Mg, *) with constant product is a Frobenius algebra M.
Given (gTfA), a local potential Φ is a local smooth function such that
Quantum Field Theory II - 页 2 A3b23ca6546c8ae48d78acb850561c5a
for all flat vector fields XY, and Z.
Frobenius manifold (Mg, *) is now a flat Riemannian manifold (Mg) with symmetric 3-tensor A that admits everywhere a local potential and is associative.
Elementary properties[edit]
The associativity of the product * is equivalent to the following quadraticPDE in the local potential Φ
Quantum Field Theory II - 页 2 D03b28be1ff3d8d66b5601df2436302b
where Einstein's sum convention is implied, Φ,a denotes the partial derivative of the function Φ by the coordinate vectorfield ∂/∂xa which are all assumed to be flat. gef are the coefficients of the inverse of the metric.
The equation is therefore called associativity equation or Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equation.
Examples[edit]
Beside Frobenius algebras, examples arise from quantum cohomology. Namely, given a semipositive symplectic manifold (Mω) then there exists an open neighborhood U of 0 in its even quantum cohomologyQHeven(Mω) with Novikov ring over C such that the big quantum product *a for a in U is analytic. Now U together with the intersection form g = <·,·> is a (complex) Frobenius manifold.
References[edit]
[/ltr][/size]

  1. Jump up^ B. Dubrovin: Geometry of 2D topological field theories. In: Springer LNM, 1620 (1996), pp. 120–348.

[size][ltr]
2. Yu.I. Manin, S.A. Merkulov: Semisimple Frobenius (super)manifolds and quantum cohomology of Pr, Topol. Methods in Nonlinear Analysis 9 (1997), pp. 107–161[/ltr]
[/size]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-15, 04:12

组合数学[编辑]




[ltr]
组合数学(combinatorics),亦称组合论组合学数学的一个分支,亦即离散数学中的排列组合研究,所研究的是计数的技巧[1]。[/ltr]

[ltr]目录
  [隐藏[/ltr]




[ltr]

广义与狭义的组合数学[编辑]
广义的组合数学就是离散数学,狭义的组合数学是图论代数结构数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数组合设计组合矩阵组合优化最佳组合)等。
历史及发展[编辑]
虽然数数始于以结计数的远古时代,由于那时人的智力的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论代数函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。
同时,在人们对于形有了深入的了解和研究的基础上,在形成与形密切相关的各种数学分支的过程中,如几何学拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。
由此观之,组合学与其他数学分支有着必然的密切联系。它的一些研究内容与方法来自各个分支也应用于各个分支。当然,组合学与其他数学分支一样也有其独特的研究问题与方法,它源于人们对于客观世界中存在的数与形及其关系的发现和认识。例如,中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图(又称河图洛书)中关于幻方的记载,是人们至今所了解的最早发现的组合问题
于11和12世纪间,贾宪就发现了二项式系数杨辉将它整理记载在他的《续古抉奇法》一书中。这就是中国通常称的杨辉三角。事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数。13世纪波斯的哲学家曾讲授过此类三角。而在西方,布莱兹·帕斯卡发现这个三角形是在17世纪中期。这个三角形在其他数学分支的应用也是屡见不鲜的。同时,帕斯卡和费马均发现了许多与概率论有关的经典组合学的结果。因此,西方人认为组合学开始于17世纪。组合学一词是德国数学家莱布尼茨在数学的意义下首次应用。也许,在那时他已经预感到了其将来的蓬勃发展。然而只有到了18世纪欧拉所处时代,组合学才可以说开始了作为一门科学的发展,因为那时,他解决了柯尼斯堡七桥问题,发现了多面体(首先是凸多面体,即平面图的情形)的顶点数、边数和面数之间的简单关系。现在已被人们称为欧拉公式。甚至,当今人们所称的哈密顿圈的首创者也应该是欧拉。这些不但使欧拉成为组合学的一个重要组成部分——图论而且也成为占据现代数学舞台中心的拓扑学发展的先驱。同时,他对导致当今组合学中的另一个重要组成部分——组合设计中的拉丁方的研究所提出的猜想,人们称为欧拉猜想,直到1959年才得到完全的解决。
于19世纪初,高斯提出的组合系数,今称高斯二项式系数,在经典组合学中也占有重要地位。同时,他还研究过平面上的闭曲线的相交问题,由此所提出的猜想称为高斯猜想,它直到20世纪才得到解决。这个问题不仅贡献于拓扑学,而且也贡献于组合学中图论的发展。同在19世纪,由乔治·布尔发现且被当今人们称为布尔代数的分支已经成为组合学中序理论的基石。当然,在这一时期,人们还研究其他许多组合问题,它们中的大多数是娱乐性的。
20世纪初期,庞加莱联系多面体问题发展了组合学的概念与方法,导致了近代拓扑学从组合拓扑学到代数拓扑学的发展。于20世纪的中、后期,组合学发展之迅速也许是人们意想不到的。首先,于1920年费希尔(Fisher,R.A.)和耶茨(Yates,F.)发展了实验设计的统计理论,其结果导致后来的信息论,特别是编码理论的形成与发展.于1939年,坎托罗维奇(Канторович,Л.В.)发现了线性规划问题并提出解乘数法。于1947年丹齐克(Dantzig,G.B.)给出了一般的线性规划模型和理论,他所创立的单纯形方法奠定了这一理论的基础,阐明了其解集的组合结构。直到今天它仍然是应用得最广泛的数学方法之一。这些又导致以网络流为代表的运筹学中的一系列问题的形成与发展。开拓了人们目前称为组合最优化的一个组合学的新分支。在20世纪50年代,中国也发现并解决了一类称为运输问题的线性规划的图上作业法,它与一般的网络流理论确有异曲同工之妙。在此基础上又出现了国际上通称的中国邮递员问题。
另一方面,自1940年以来,生于英国的塔特(Tutte,W.T.)在解决拼方问题中取得了一系列有关图论的结果,这些不仅开辟了现今图论发展的许多新研究领域,而且对于20世纪30年代,惠特尼(Whitney,H.)提出的拟阵论以及人们称之为组合几何的发展都起到了核心的推动作用。应该特别提到的是在这一时期,随着电子技术和计算机科学的发展愈来愈显示出组合学的潜在力量。同时,也为组合学的发展提出了许多新的研究课题。例如,以大规模和超大规模集成电路设计为中心的计算机辅助设计提出了层出不穷的问题。其中一些问题的研究与发展正在形成一种新的几何,目前人们称之为组合计算几何。关于算法复杂性的研究,自1961年库克(Cook,S.A.)提出NP完全性理论以来,已经将这一思想渗透到组合学的各个分支以至数学和计算机科学中的一些分支。
近20年来,用组合学中的方法已经解决了一些即使在整个数学领域也是具有挑战性的难题。例如,范·德·瓦尔登(Van der Waerden,B.L.)于1926年提出的关于Van der Waerden猜想的证明;希伍德(Heawood,P.J.)于1890年提出的曲面地图着色猜想的解决;著名的四色定理的计算机验证和扭结问题的新组合不变量发现等。在数学中已经或正在形成着诸如组合拓扑组合几何组合数论组合矩阵论组合群论等与组合学密切相关的交叉学科。此外,组合学也正在渗透到其他自然科学以及社会科学的各个方面,例如,物理学、力学、化学、生物学、遗传学、心理学以及经济学、管理学甚至政治学等。[1]
分支[编辑]
根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学组合设计组合序图与超图组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。[1]
中国的研究者[编辑]
在中国当代的数学家中,较早地在组合学中的不同方面作出过贡献的有华罗庚、吴文俊、柯召、万哲先、张里千和陆家羲等。其中,万哲先和他领导的研究组在有限几何方面的系统工作不仅对于组合设计而且对于图的对称性的研究都有影响。陆家羲的有关不交斯坦纳三元系大集的一系列的文章不仅解决了组合设计方面的一个难题,而且他所创立的方法对于其后的研究者也产生了和正产生着积极的作用。[1]
组合数学中的著名问题[编辑][/ltr]


  • 计算一些物品在特定条件下分组的方法数目。这些是关于排列组合整数分拆的。
  • 地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是否总共只需四种颜色?这是图论的问题。
  • 船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河?这是线性规划的问题。
  • 中国邮差问题:由中国组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。
  • 任务分配问题(也称分配问题):有一些员工要完成一些任务。各个员工完成不同任务所花费的时间都不同。每个员工只分配一项任务。每项任务只被分配给一个员工。怎样分配员工与任务以使所花费的时间最少?这是线性规划的问题。
  • 如何构造幻方
  • 大乐透


[ltr]
排列[编辑]
主条目:排列[/ltr]

Quantum Field Theory II - 页 2 130px-Permutations_RGB.svg

Quantum Field Theory II - 页 2 Magnify-clip
3个彩球的排列(不重复出现)

[ltr]
排列的任务是确定Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1个不同的元素的排序的可能性。从右边的示意图可看出,3个不同颜色的彩球一共有6种不同的排列方式,因此有如下定理:“Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1个不同的元素可以有Quantum Field Theory II - 页 2 388f554901ba5d77339eec8b26beebea种不同的排列方式,即Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1阶乘。”因此上面的例子的算法是3 ! = 6。
另一个问题,如果从Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1个元素中取出Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素,这Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素的排列是多少呢?公式如下:
Quantum Field Theory II - 页 2 Fd70b5615ac3fbf4ea176c9767c25e47
例如,在赌马游戏中一共有8匹马参加比赛,玩家需要在彩票上填入前三位胜出的马匹的号码,按照上面的公式,Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1 = 8,Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3 = 3,玩家一共可以填出的3匹马号的排列数为:
Quantum Field Theory II - 页 2 95247892f281563dfacdd45470b169c7

因为一共存在336种可能性,因此玩家在一次填入中中奖的概率应该是:
Quantum Field Theory II - 页 2 F66207819dc218196c3cb64c9a06015c
以上提到的都是在Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3不发生重复的情况下的排列。
如果在Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1个元素中取出Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素进行排列,这Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素可以重复出现,那么排列数则有如下公式:
Quantum Field Theory II - 页 2 00e6eb59d4a992f432cce060b9acfb91
还是上面的例子,Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3可以重复出现,这意味着玩家可以在前三名的位置上填入同一匹马号,因此在这种情况下可能出现的排列总数为:
83 = 512

另外,Quantum Field Theory II - 页 2 00e6eb59d4a992f432cce060b9acfb91也可以记为[2]
Quantum Field Theory II - 页 2 47e626f831204f92edfd7d493a1c9aee[2]
这时的一次性添入中奖的概率就应该是:
Quantum Field Theory II - 页 2 Cfd002594a6b3db2010088ceffdab5d9(当然,同一匹马同时获得1,2,3名的情况在现实中是不存在的)
另一个来自数字技术的例子,在二进制中只有0和1两种状态,一个有Quantum Field Theory II - 页 2 9dd4e461268c8034f5c8564e155c67a6位的二进制数字可以有2x种排列方式,也即可以表达2x个不同的数字。
组合[编辑]
主条目:组合
和排列不同的是,在组合中取出元素的顺序则不在考虑之中。从Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1个元素中取出Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素,这Quantum Field Theory II - 页 2 8ce4b16b22b58894aa86c421e8759df3个元素可能出现的组合数为:
Quantum Field Theory II - 页 2 3b8a2136a47a4e18797d6d96fed12324
***游戏为例。在***游戏中从49个球中取出6个进行组合的可能性一共有:
Quantum Field Theory II - 页 2 A554708f5c691920104408695f16eb04
如同排列,上面的例子是建立在如下前提的(即球从摇奖机中出来后不再放回去,或者说组合不发生重复),但如果球摇出来后再放回摇奖机中,这时的组合的可能性则是:
Quantum Field Theory II - 页 2 36a89e26d57424db96749aac1c739e1f
类似的例子比如连续掷两次骰子,获得的两个点数的组合可能性一共有:
Quantum Field Theory II - 页 2 15376e74d0d0c57d4112258a18807758
另外Quantum Field Theory II - 页 2 4b2c18b15a314444d22cfb3d45cf1835也可以记为[3]
Quantum Field Theory II - 页 2 Ccc23e1e635e4a46ea203e49457c7c27[3]
总结[编辑][/ltr]



[th][/th][th]排列{ a,b } ≠ { b,a }(考虑顺序)[/th][th]组合{ a,b } = { b,a }(不考虑顺序)[/th]
不重复出现(不放回去)
{ a,b,c }
Quantum Field Theory II - 页 2 33fbb9adfc2487010526c7a2ac53024aQuantum Field Theory II - 页 2 A4b1204c00d8d4acd94ffd1ff7a4f5b5
重复出现(再放回去)
{ a,a,b }
Quantum Field Theory II - 页 2 02ebd7524d465a8cad0ca5d98e450829Quantum Field Theory II - 页 2 69bbbf0891b49fdc4262beea60ea6205
[ltr]
外部链接[编辑][/ltr]



[ltr]
参考文献[编辑][/ltr]


  1. 1.0 1.1 1.2 1.3 《数学辞海(第二卷)》山西教育出版社 中国科学技术出版社 东南大学出版社
  2. 2.0 2.1 组合数学 ─算法与分析─. 九章出版社. : 29. OCLC:44527392
  3. 3.0 3.1 组合数学 ─算法与分析─. 九章出版社. : 33. OCLC:44527392


[ltr]
参见[编辑][/ltr]





代数组合学[编辑]



[ltr]代数组合学组合数学中与抽象代数相关的分支,它可以意指解决组合问题的抽象代数方法,或涉及代数问题的组合学方法。相关的数学课题包括了
[/ltr]

[size][ltr]
相关书目[编辑]
[/ltr][/size]

  • Takayuki Hibi, Algebraic combinatorics on convex polytopes, Carslaw Publications, Glebe, Australia, 1992
  • Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes. Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171--223. Lecture Notes in Pure and Appl. Math., vol. 26, Dekker, New York, 1977.
  • Ezra Miller, Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, NY, 2005. ISBN 0-387-22356-8
  • Richard Stanley, Combinatorics and commutative algebra. Second edition, Progress in Mathematics, vol. 41. Birkhäuser, Boston, MA, 1996. ISBN 0-8176-3836-9
  • Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. ISBN 0-8218-0487-1


Quantum Field Theory II - 页 2 25px-E-to-the-i-pi.svg  这是与数学相关的小作品。你可以通过编辑或修订扩充其内容。

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-15, 04:19


Partially ordered set

From Wikipedia, the free encyclopedia



Quantum Field Theory II - 页 2 250px-Hasse_diagram_of_powerset_of_3.svg

Quantum Field Theory II - 页 2 Magnify-clip
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by inclusion. Sets on the same horizontal level don't share a precedence relationship. Other pairs, such as {x} and {y,z}, do not either.

[ltr]
In mathematics, especiallyorder theory, a partially ordered set (or poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set, one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair of elements need be related: for some pairs, it may be that neither element precedes the other in the poset. Thus, partial orders generalize the more familiartotal orders, in which every pair is related. A finite poset can be visualized through its Hasse diagram, which depicts the ordering relation.[1]
familiar real-life example of a partially ordered set is a collection of people ordered by genealogical descendancy. Some pairs of people bear the descendant-ancestor relationship, but other pairs bear no such relationship.[/ltr]


[ltr]Contents
  [hide[/ltr]




[ltr]

Definition[edit]
A (non-strict) partial order[2] is a binary relation "≤" over a set P which isreflexiveantisymmetric, and transitive, i.e., which satisfies for all ab, andc in P:[/ltr]




[ltr]
In other words, a partial order is an antisymmetric preorder.
A set with a partial order is called a partially ordered set (also called aposet). The term ordered set is sometimes also used for posets, as long as it is clear from the context that no other kinds of orders are meant. In particular, totally ordered sets can also be referred to as "ordered sets", especially in areas where these structures are more common than posets.
For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, then a andb are comparable. Otherwise they are incomparable. In the figure on top-right, e.g. {x} and {x,y,z} are comparable, while {x} and {y} are not. A partial order under which every pair of elements is comparable is called atotal order or linear order; a totally ordered set is also called a chain(e.g., the natural numbers with their standard order). A subset of a poset in which no two distinct elements are comparable is called an antichain(e.g. the set of singletons {{x}, {y}, {z}} in the top-right figure). An element ais said to be covered by another element b, written a<:b, if a is strictly less than b and no third element c fits between them; formally: if both aband ab are true, and acb is false for each c with acb. A more concise definition will be given below using the strict order corresponding to "≤". For example, {x} is covered by {x,z} in the top-right figure, but not by {x,y,z}.
Examples[edit]
Standard examples of posets arising in mathematics include:[/ltr]



  • The real numbers ordered by the standard less-than-or-equal relation ≤ (a totally ordered set as well).











  • For a partially ordered set P, the sequence space containing allsequences of elements from P, where sequence a precedes sequenceb if every item in a precedes the corresponding item in b. Formally,(an)n∈ℕ ≤ (bn)n∈ℕ if and only if an ≤ bn for all n in ℕ.



  • For a set X and a partially ordered set P, the function space containing all functions from X to P, where f ≤ g if and only if f(x) ≤ g(x) for all x inX.



  • fence, a partially ordered set defined by an alternating sequence of order relations a < b > c < d ...


[ltr]
Extrema[edit][/ltr]


Quantum Field Theory II - 页 2 130px-Infinite_lattice_of_divisors.svg

Quantum Field Theory II - 页 2 Magnify-clip
Nonnegative integers, ordered by divisibility

Quantum Field Theory II - 页 2 351px-Hasse_diagram_of_powerset_of_3_no_greatest_or_least.svg

Quantum Field Theory II - 页 2 Magnify-clip
The figure above with the greatest and least elements removed. In this reduced poset, the top row of elements are allmaximal elements, and the bottom row are all minimalelements, but there is no greatest and no least element. The set {x, y} is an upper bound for the collection of elements {{x}, {y}}.

[ltr]
There are several notions of "greatest" and "least" element in a poset P, notably:[/ltr]



  • Greatest element and least element: An element g in P is a greatest element if for every element a in Pa ≤ g. An element m inP is a least element if for every element a inPa ≥ m. A poset can only have one greatest or least element.
  • Maximal elements and minimal elements: An element g in P is a maximal element if there is no element a in P such that a > g. Similarly, an elementm in P is a minimal element if there is no element ain P such thata < m. If a poset has a greatest element, it must be the unique maximal element, but otherwise there can be more than one maximal element, and similarly for least elements and minimal elements.
  • Upper and lower bounds: For a subset A of P, an element x in P is an upper bound of A if a ≤ x, for each element a in A. In particular, x need not be in A to be an upper bound of A. Similarly, an element x in P is a lower bound of A if a ≥ x, for each element a in A. A greatest element ofP is an upper bound of P itself, and a least element is a lower bound ofP.


[ltr]
For example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element (although if one would include 0 in the poset, which is a multiple of any integer, that would be a greatest element; see figure). This partially ordered set does not even have any maximal elements, since any g divides for instance 2g, which is distinct from it, so gis not maximal. If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {2,3,5,10}, which subset does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which subset does not have any upper bound.
Orders on the Cartesian product of partially ordered sets[edit][/ltr]


Quantum Field Theory II - 页 2 142px-Strict_product_order_on_pairs_of_natural_numbers.svg

Quantum Field Theory II - 页 2 Magnify-clip
Reflexive closure of strict direct product order on ℕ×ℕ. Elementscovered by (3,3) and covering (3,3) are highlighted in green and red, respectively.

Quantum Field Theory II - 页 2 195px-N-Quadrat%2C_gedreht.svg

Quantum Field Theory II - 页 2 Magnify-clip
Product order on ℕ×ℕ

Quantum Field Theory II - 页 2 200px-Lexicographic_order_on_pairs_of_natural_numbers.svg

Quantum Field Theory II - 页 2 Magnify-clip
Lexicographic order on ℕ×ℕ

[ltr]
In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the Cartesian product of two partially ordered sets are (see figures):[/ltr]




[ltr]
All three can similarly be defined for the Cartesian product of more than two sets.
Applied to ordered vector spaces over the same field, the result is in each case also an ordered vector space.
See also orders on the Cartesian product of totally ordered sets.
Strict and non-strict partial orders[edit]
In some contexts, the partial order defined above is called a non-strict (orreflexive, or weakpartial order. In these contexts a strict (orirreflexivepartial order "<" is a binary relation that is irreflexive,transitive and asymmetric, i.e. which satisfies for all ab, and c in P:[/ltr]



  • not a < a (irreflexivity),
  • if a < b and b < c then a < c (transitivity), and
  • if a < b then not b < a (asymmetry; implied by irreflexivity and transitivity[3]).


[ltr]
There is a 1-to-1 correspondence between all non-strict and strict partial orders.
If "≤" is a non-strict partial order, then the corresponding strict partial order "<" is the irreflexive kernel given by:
a < b if a ≤ b and a ≠ b
Conversely, if "<" is a strict partial order, then the corresponding non-strict partial order "≤" is the reflexive closure given by:
a ≤ b if a < b or a = b.
This is the reason for using the notation "≤".
Using the strict order "<", the relation "a is covered by b" can be equivalently rephrased as "a<b, but not a<c<b for any c". Strict partial orders are useful because they correspond more directly to directed acyclic graphs (dags): every strict partial order is a dag, and the transitive closure of a dag is both a strict partial order and also a dag itself.
Inverse and order dual[edit]
The inverse or converse ≥ of a partial order relation ≤ satisfies xy if and only if yx. The inverse of a partial order relation is reflexive, transitive, and antisymmetric, and hence itself a partial order relation. The order dualof a partially ordered set is the same set with the partial order relation replaced by its inverse. The irreflexive relation > is to ≥ as < is to ≤.
Any one of the four relations ≤, <, ≥, and > on a given set uniquely determines the other three.
In general two elements x and y of a partial order may stand in any of four mutually exclusive relationships to each other: either x < y, or x = y, or x >y, or x and y are incomparable (none of the other three). A totally orderedset is one that rules out this fourth possibility: all pairs of elements are comparable and we then say that trichotomy holds. The natural numbers, the integers, the rationals, and the reals are all totally ordered by their algebraic (signed) magnitude whereas the complex numbers are not. This is not to say that the complex numbers cannot be totally ordered; we could for example order them lexicographically via x+iy < u+iv if and only if x < uor (x = u and y < v), but this is not ordering by magnitude in any reasonable sense as it makes 1 greater than 100i. Ordering them by absolute magnitude yields a preorder in which all pairs are comparable, but this is not a partial order since 1 and i have the same absolute magnitude but are not equal, violating antisymmetry.[/ltr]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-15, 04:20

[ltr]Mappings between partially ordered sets[size=13][edit]
[/ltr][/size]
Quantum Field Theory II - 页 2 349px-Birkhoff120.svg
Quantum Field Theory II - 页 2 Magnify-clip
Order isomorphism between the divisors of 120 (partially ordered by divisibility) and the divisor-closed subsets of {2,3,4,5,8} (partially ordered by set inclusion)

Quantum Field Theory II - 页 2 268px-Monotonic_but_nonhomomorphic_map_between_lattices
Quantum Field Theory II - 页 2 Magnify-clip
Order-preserving, but not order-reflecting (since f(u)≤f(v), but not uv) map.
[size][ltr]
Given two partially ordered sets (S,≤) and (T,≤), a function fS→ T is calledorder-preserving, ormonotone, or isotone, if for all x and y in Sxyimplies f(x) ≤ f(y). If (U,≤) is also a partially ordered set, and both fS → T andgT → U are order-preserving, theircomposition (gf): S → Uis order-preserving, too. A function fS → T is calledorder-reflecting if for allx and y in Sf(x) ≤ f(y) implies xy. If f is both order-preserving and order-reflecting, then it is called an order-embedding of (S,≤) into (T,≤). In the latter case, f is necessarily injective, since f(x) = f(y) implies x ≤ y and y ≤ x. If an order-embedding between two posets S and T exists, one says that Scan be embedded into T. If an order-embedding fS → T is bijective, it is called an order isomorphism, and the partial orders (S,≤) and (T,≤) are said to be isomorphic. Isomorphic orders have structurally similar Hasse diagrams (cf. right picture). It can be shown that if order-preserving maps f:S → T and gT → S exist such that gf and fg yields the identity functionon S and T, respectively, then S and T are order-isomorphic. [4]
For example, a mapping f: ℕ → ℙ(ℕ) from the set of natural numbers (ordered by divisibility) to the power set of natural numbers (ordered by set inclusion) can be defined by taking each number to the set of its prime divisors. It is order-preserving: if x divides y, then each prime divisor of x is also a prime divisor of y. However, it is neither injective (since it maps both 12 and 6 to {2,3}) nor order-reflecting (since besides 12 doesn't divide 6). Taking instead each number to the set of its prime power divisors defines a map g: ℕ → ℙ(ℕ) that is order-preserving, order-reflecting, and hence an order-embedding. It is not an order-isomorphism (since it e.g. doesn't map any number to the set {4}), but it can be made one by restricting its codomain to g(ℕ). The right picture shows a subset of ℕ and its isomorphic image under g. The construction of such an order-isomophism into a power set can be generalized to a wide class of partial orders, calleddistributive lattices, see "Birkhoff's representation theorem".
Number of partial orders[edit]
[/ltr][/size]
Quantum Field Theory II - 页 2 250px-Poset6
Quantum Field Theory II - 页 2 Magnify-clip
Partially ordered set of set of all subsetsof a six-element set {a, b, c, d, e, f}, ordered by the subset relation.
[size][ltr]
Sequence A001035 in OEISgives the number of partial orders on a set of n labeled elements:
[/ltr][/size][th]Number of n-element binary relations of different types[/th][th]n[/th][th]all[/th][th]transitive[/th][th]reflexive[/th][th]preorder[/th][th]partial order[/th][th]total preorder[/th][th]total order[/th][th]equivalence relation[/th]
011111111
122111111
21613443322
35121716429191365
46553639944096355219752415
OEISA002416A006905A053763A000798A001035A000670A000142A000110
[size][ltr]
The number of strict partial orders is the same as that of partial orders.
If we count only up to isomorphism, we get 1, 1, 2, 5, 16, 63, 318, … (sequence A000112 in OEIS).
Linear extension[edit]
A partial order ≤* on a set X is an extension of another partial order ≤ onX provided that for all elements x and y of X, whenever Quantum Field Theory II - 页 2 0499fbc0b0f937d8f3a192a94edcd193, it is also the case that x ≤* y. A linear extension is an extension that is also a linear (i.e., total) order. Every partial order can be extended to a total order (order-extension principle).[5]
In computer science, algorithms for finding linear extensions of partial orders (represented as the reachability orders of directed acyclic graphs) are called topological sorting.
In category theory[edit]
Every poset (and every preorder) may be considered as a category in which every hom-set has at most one element. More explicitly, let hom(xy) = {(xy)} if x ≤ y (and otherwise the empty set) and (yz)∘(xy) = (xz). Posets are equivalent to one another if and only if they are isomorphic. In a poset, the smallest element, if it exists, is an initial object, and the largest element, if it exists, is a terminal object. Also, every preordered set is equivalent to a poset. Finally, every subcategory of a poset isisomorphism-closed.
functor from a poset category (a diagram indexed by a poset category) is a commutative diagram.
Partial orders in topological spaces[edit]
If P is a partially ordered set that has also been given the structure of atopological space, then it is customary to assume that {(ab) : a ≤ b} is aclosed subset of the topological product space Quantum Field Theory II - 页 2 257994e5507f0412d3c9fd343c40a9f4. Under this assumption partial order relations are well behaved at limits in the sense that if Quantum Field Theory II - 页 2 4b84974afd109bb4a21eb3d7600eba44Quantum Field Theory II - 页 2 9f0afd2591ff0ada069b0a547eb580d3 and ai ≤ bi for all i, then a ≤ b.[6]
Interval[edit]
For a ≤ b, the closed interval [a,b] is the set of elements x satisfying a ≤ x≤ b (i.e. a ≤ x and x ≤ b). It contains at least the elements a and b.
Using the corresponding strict relation "<", the open interval (a,b) is the set of elements x satisfying a < x < b (i.e. a < x and x < b). An open interval may be empty even if a < b. For example, the open interval (1,2) on the integers is empty since there are no integers i such that 1 < i < 2.
Sometimes the definitions are extended to allow a > b, in which case the interval is empty.
The half-open intervals [a,b) and (a,b] are defined similarly.
A poset is locally finite if every interval is finite. For example, the integersare locally finite under their natural ordering. The lexicographical order on the cartesian product ℕ×ℕ is not locally finite, since e.g. (1,2)≤(1,3)≤(1,4)≤(1,5)≤...≤(2,1). Using the interval notation, the property "a is covered by b" can be rephrased equivalently as [a,b] = {a,b}.
This concept of an interval in a partial order should not be confused with the particular class of partial orders known as the interval orders.
See also[edit]
[/ltr][/size]
[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up^ Merrifield, Richard E.; Simmons, Howard E. (1989). Topological Methods in Chemistry. New York: John Wiley & Sons. p. 28. ISBN 0-471-83817-9. Retrieved 27 July 2012. "A partially ordered set is conveniently represented by a Hasse diagram..."

  2. Jump up^ Simovici, Dan A. & Djeraba, Chabane (2008). "Partially Ordered Sets".Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics. Springer. ISBN 9781848002012.

  3. Jump up^ Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. (2007). Transitive Closures of Binary Relations I. Prague: School of Mathematics - Physics Charles University. p. 1. Lemma 1.1 (iv). Note that this source refers to asymmetric relations as "strictly antisymmetric".

  4. Jump up^ Davey, B. A.; Priestley, H. A. (2002). "Maps between ordered sets".Introduction to Lattices and Order (2nd ed.). New York: Cambridge University Press. pp. 23–24. ISBN 0-521-78451-4MR 1902334.

  5. Jump up^ Jech, Thomas (2008) [1973]. The Axiom of ChoiceDover Publications.ISBN 0-486-46624-8.

  6. Jump up^ Ward, L. E. Jr (1954). "Partially Ordered Topological Spaces".Proceedings of the American Mathematical Society 5 (1): 144–161.doi:10.1090/S0002-9939-1954-0063016-5


[size][ltr]
References[edit]
[/ltr][/size]

  • Deshpande, Jayant V. (1968). "On Continuity of a Partial Order".Proceedings of the American Mathematical Society 19 (2): 383–386.doi:10.1090/S0002-9939-1968-0236071-7.
  • Schröder, Bernd S. W. (2003). Ordered Sets: An Introduction. Birkhäuser, Boston.
  • Stanley, Richard P.Enumerative Combinatorics 1. Cambridge Studies in Advanced Mathematics 49. Cambridge University Press. ISBN 0-521-66351-2.

[size][ltr]
External links[edit]
[/ltr][/size]

  • A001035: Number of posets with n labeled elements in theOEIS
  • A000112: Number of posets with n unlabeled elements in the OEIS



一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-16, 03:06

Inclusion–exclusion principle容斥原理

From Wikipedia, the free encyclopedia
  (Redirected from Inclusion-exclusion principle)


Quantum Field Theory II - 页 2 220px-Venn-diagram-AB.svg

Quantum Field Theory II - 页 2 Magnify-clip
The union of sets A and B

[ltr]
In combinatorics (combinatorial mathematics), the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Quantum Field Theory II - 页 2 F3a5d409631e07b27438b8ab30bd9753
where A and B are two finite sets and |S| indicates the cardinality of a set S(which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.
The principle is more clearly seen in the case of three sets, which for the sets AB and C is given by
Quantum Field Theory II - 页 2 A3d6b0a4eed83059d8386e6961105062
This formula can be verified by counting how many times each region in the Venn diagram figure is included in the right-hand side of the formula. In this case, when removing the contributions of over-counted elements, the number of elements in the mutual intersection of the three sets has been subtracted too often, so must be added back in to get the correct total.[/ltr]

Quantum Field Theory II - 页 2 220px-Inclusion-exclusion.svg

Quantum Field Theory II - 页 2 Magnify-clip
Inclusion–exclusion illustrated by a Venn diagram for three sets

[ltr]
Generalizing the results of these examples gives the principle of inclusion–exclusion. To find the cardinality of the union of n sets:[/ltr]


  1. Include the cardinalities of the sets.
  2. Exclude the cardinalities of the pairwise intersections.
  3. Include the cardinalities of the triple-wise intersections.
  4. Exclude the cardinalities of the quadruple-wise intersections.
  5. Include the cardinalities of the quintuple-wise intersections.
  6. Continue, until the cardinality of the n-tuple-wise intersection is included (if n is odd) or excluded (n even).


[ltr]
The name comes from the idea that the principle is based on over-generous inclusion, followed by compensating exclusion. This concept is attributed to Abraham de Moivre (1718);[1] but it first appears in a paper ofDaniel da Silva (1854),[2] and later in a paper by J. J. Sylvester (1883).[3]Sometimes the principle is referred to as the formula of Da Silva, or Sylvester due to these publications. The principle is an example of thesieve method extensively used in number theory and is sometimes referred to as the sieve formula,[4] though Legendre already used a similar device in a sieve context in 1808.
As finite probabilities are computed as counts relative to the cardinality of the probability space, the formulas for the principle of inclusion–exclusion remain valid when the cardinalities of the sets are replaced by finite probabilites. More generally, both versions of the principle can be put under the common umbrella of measure theory.
In a very abstract setting, the principle of inclusion–exclusion amounts to no more than the calculation of the inverse of a certain matrix.[5] From this point of view, there is nothing mathematically interesting about the principle. However, the wide applicability of the principle makes it an extremely valuable technique in combinatorics and related areas of mathematics. As Gian-Carlo Rota put it:[6][/ltr]

"One of the most useful principles of enumeration in discrete probability and combinatorial theory is the celebrated principle of inclusion–exclusion. When skillfully applied, this principle has yielded the solution to many a combinatorial problem."


[ltr]Contents
  [hide[/ltr]






[ltr]

Statement[edit][/ltr]

Quantum Field Theory II - 页 2 220px-Inclusion-exclusion-3sets

Quantum Field Theory II - 页 2 Magnify-clip
Each term of the inclusion–exclusion formula gradually corrects the count until finally each portion of theVenn diagram is counted exactly once.

[ltr]
In its general form, the principle of inclusion–exclusion states that for finite sets A1, ..., An, one has the identity
Quantum Field Theory II - 页 2 4f820d0939928ab4bf06b2921edc1e21
This can be compactly written as
Quantum Field Theory II - 页 2 A987c715312e856a755324bacd7ee694
or
Quantum Field Theory II - 页 2 18c78f89643937586ca6ac3929cdc86d
In words, to count the number of elements in a finite union of finite sets, first sum the cardinalities of the individual sets, then subtract the number of elements which appear in more than one set, then add back the number of elements which appear in more than two sets, then subtract the number of elements which appear in more than three sets, and so on. This process naturally ends since there can be no elements which appear in more than the number of sets in the union.
In applications it is common to see the principle expressed in its complementary form. That is, letting S be a finite universal set containing all of the Ai and letting Quantum Field Theory II - 页 2 9dd4d939ac8d8fbd67503790401b0ddc denote the complement of Ai in S, by De Morgan's laws we have
Quantum Field Theory II - 页 2 0719353c1c4a12748b1f2efb85a49255
As another variant of the statement, let P1P2, ..., Pn be a list of properties that elements of a set S may or may not have, then the principle of inclusion–exclusion provides a way to calculate the number of elements ofS which have none of the properties. Just let Ai be the subset of elements of S which have the property Pi and use the principle in its complementary form. This variant is due to J.J. Sylvester.[1]
Examples[edit]
Counting integers[edit]
As a simple example of the use of the principle of inclusion–exclusion, consider the question:[7]
How many integers in {1,...,100} are not divisible by 2, 3 or 5?
Let S = {1,...,100} and P1 the property that an integer is divisible by 2, P2the property that an integer is divisible by 3 and P3 the property that an integer is divisible by 5. Letting Ai be the subset of S whose elements have property Pi we have by elementary counting: |A1| = 50, |A2| = 33, and |A3| = 20. There are 16 of these integers divisible by 6, 10 divisible by 10 and 6 divisible by 15. Finally, there are just 3 integers divisible by 30, so the number of integers not divisible by any of 2, 3 or 5 is given by:
100 − (50 + 33 + 20) + (16 + 10 + 6) − 3 = 26.
Counting derangements[edit]
A more complex example is the following.
Suppose there is a deck of n cards, each card is numbered from 1 to n. Suppose a card numbered m is in the correct position if it is the mth card in the deck. How many ways, W, can the cards be shuffled with at least 1 card being in the correct position?
Begin by defining set Am, which is all of the orderings of cards with the mth card correct. Then the number of orders, W, with at least one card being in the correct position, m, is
Quantum Field Theory II - 页 2 680f48498bd97e2beb5948ea713dea04
Apply the principle of inclusion–exclusion,
Quantum Field Theory II - 页 2 0fa4f508b8704ba7f31b82770af84cb3
Each value Quantum Field Theory II - 页 2 B6f1bd7ef28bb82788961477430e3bc6 represents the set of shuffles having at least p values m1, ..., mp in the correct position. Note that the number of shuffles with at least p values correct only depends on p, not on the particular values of Quantum Field Theory II - 页 2 6f8f57715090da2632453988d9a1501b. For example, the number of shuffles having the 1st, 3rd, and 17th cards in the correct position is the same as the number of shuffles having the 2nd, 5th, and 13th cards in the correct positions. It only matters that of the n cards, 3 were chosen to be in the correct position. Thus there are Quantum Field Theory II - 页 2 D88e272547a3b6ba711b1019c97ba664 equal terms in the pth summation (seecombination).
Quantum Field Theory II - 页 2 55800588a626855d823091bc08ed7275
Quantum Field Theory II - 页 2 F9d0c6f383154c0842673633c45d5031 is the number of orderings having p elements in the correct position, which is equal to the number of ways of ordering the remaining n − p elements, or (n − p)!. Thus we finally get:
Quantum Field Theory II - 页 2 7c57bcb3aa088b6f9d203f96c21e329a
Noting that Quantum Field Theory II - 页 2 4827b5aa87a1c968d6699285b3a6f4f6, this reduces to
Quantum Field Theory II - 页 2 8b327fbd43453ddfe894da21b48d0e94
A permutation where no card is in the correct position is called aderangement. Taking n! to be the total number of permutations, the probability Q that a random shuffle produces a derangement is given by
Quantum Field Theory II - 页 2 C68abb08d8613c44d05e7812e297ddd3
a truncation to n+1 terms of the Taylor expansion of e−1. Thus the probability of guessing an order for a shuffled deck of cards and being incorrect about every card is approximately 1/e or 37%.
A special case[edit]
The situation that appears in the derangement example above occurs often enough to merit special attention.[8] Namely, when the size of the intersection sets appearing in the formulas for the principle of inclusion–exclusion depend only on the number of sets in the intersections and not on which sets appear. More formally, if the intersection
Quantum Field Theory II - 页 2 D06c565b15ced36429d335fc8b733c68
has the same cardinality, say αk = |AJ|, for every k-element subset J of {1, ..., n}, then
Quantum Field Theory II - 页 2 62ee7c597464e2966bfef779da824f1d
Or, in the complementary form, where the universal set S has cardinality α0,
Quantum Field Theory II - 页 2 3d976d3eefcc63b4d3b5836fcb8019e7
A generalization[edit]
Given a family (repeats allowed) of subsets A1A2, ..., An of a universal setS, the principle of inclusion–exclusion calculates the number of elements ofS in none of these subsets. A generalization of this concept would calculate the number of elements of S which appear in exactly some fixedm of these sets.
Let N = [n] = {1,2,...,n}. If we define Quantum Field Theory II - 页 2 Cd770b84991c6211088030ab5c0d3fb4, then the principle of inclusion–exclusion can be written as, using the notation of the previous section; the number of elements of S contained in none of the Ai is:
Quantum Field Theory II - 页 2 F948d139b49b6f3637cefab9a94fbb0f
If I is a fixed subset of the index set N, then the number of elements which belong to Ai for all i in I and for no other values is:[9]
Quantum Field Theory II - 页 2 52f90856af4ee97a56fd445b35ade248
Define the sets
Quantum Field Theory II - 页 2 2fa354c54a5a8d0bebef03aaa5ca212d for k in Quantum Field Theory II - 页 2 Aa4f488c4e6c7b4d3fcd3740670968e4.
We seek the number of elements in none of the Bk which, by the principle of inclusion–exclusion (with Quantum Field Theory II - 页 2 C0ad702315e5f414faf7b3bf72da6ed4), is
Quantum Field Theory II - 页 2 47ef88d295fcb18d1af64b4577c5ed0e
The correspondence K ↔ J = I ∪ K between subsets of N \ I and subsets of N containing I is a bijection and if J and K correspond under this map then BK = AJ, showing that the result is valid.
In probability[edit]
In probability, for events A1, ..., An in a probability space Quantum Field Theory II - 页 2 F4b5cb3985fcc82cbd7c0c36b6b1f3b3, the inclusion–exclusion principle becomes for n = 2
Quantum Field Theory II - 页 2 67e3b974b99ec0871bd601abe6cd1232
for n = 3
Quantum Field Theory II - 页 2 3752c5ee56f8f86543cc52a2bfb755a3
and in general
Quantum Field Theory II - 页 2 3f59973c4b4a0f5671cce18a269fd822
which can be written in closed form as
Quantum Field Theory II - 页 2 6e3011420df418584a3ad3398dc0c00b
where the last sum runs over all subsets I of the indices 1, ..., n which contain exactly k elements, and
Quantum Field Theory II - 页 2 78d579e5c78945cefc16230f547bdd3d
denotes the intersection of all those Ai with index in I.
According to the Bonferroni inequalities, the sum of the first terms in the formula is alternately an upper bound and a lower bound for the LHS. This can be used in cases where the full formula is too cumbersome.
For a general measure space (S,Σ,μ) and measurable subsets A1, ..., Anof finite measure, the above identities also hold when the probability measure Quantum Field Theory II - 页 2 623709596363008e89cf20b6caba4df7 is replaced by the measure μ.
Special case[edit]
If, in the probabilistic version of the inclusion–exclusion principle, the probability of the intersection AI only depends on the cardinality of I, meaning that for every k in {1, ..., n} there is an ak such that
Quantum Field Theory II - 页 2 Cb63b08fac6854fd67c20ed6002218fe
then the above formula simplifies to
Quantum Field Theory II - 页 2 B40d0427e8d000ce36b1d4e77dbf9c27
due to the combinatorial interpretation of the binomial coefficient Quantum Field Theory II - 页 2 D4c68c830e884ac0686ccf9cb512e235.
An analogous simplification is possible in the case of a general measure space (S,Σ,μ) and measurable subsets A1, ..., An of finite measure.
Other forms[edit]
The principle is sometimes stated in the form[10] that says that if
Quantum Field Theory II - 页 2 Ae7b245438a6ccbd65f965b9f0fddfb3
then
Quantum Field Theory II - 页 2 56821a02693197a8358fbbe820d95621We show now that the combinatorial and the probabilistic version of the inclusion–exclusion principle are instances of (**). Take Quantum Field Theory II - 页 2 232c45a54b78b34804816e0fbc3cae94Quantum Field Theory II - 页 2 A95f4031b55c1fe6ac340f9ab52b2d96, andQuantum Field Theory II - 页 2 533304217747c45d3d52e4093b0304a5respectively for all sets Quantum Field Theory II - 页 2 5dbc98dcc983a70728bd082d1a47546e with Quantum Field Theory II - 页 2 82ee4ead40e208bbcb418138a37190f3. Then we obtainQuantum Field Theory II - 页 2 9ed10fbe1019f7c4a1439ae52b2cfe49respectively for all sets Quantum Field Theory II - 页 2 7fc56270e7a70fa81a5935b72eacbe29 with Quantum Field Theory II - 页 2 Aa189c3e0632478922cd2c92a1f6ad7b. This is because elements Quantum Field Theory II - 页 2 0cc175b9c0f1b6a831c399e269772661 of Quantum Field Theory II - 页 2 5a54467e1893a31ca870a74e29b06b6e can be contained in other Quantum Field Theory II - 页 2 E8aaf87d9a5c35b14cfbc370d3fd7b21's (Quantum Field Theory II - 页 2 E8aaf87d9a5c35b14cfbc370d3fd7b21's with Quantum Field Theory II - 页 2 43396abbac30839823248aa391487bff) as well, and the Quantum Field Theory II - 页 2 3084d4827eec525d6b19641cbf6a2cc9formula runs exactly through all possible extensions of the sets Quantum Field Theory II - 页 2 46e2d7e04f24a48a9ccf9288e7fb0c99 with other Quantum Field Theory II - 页 2 E8aaf87d9a5c35b14cfbc370d3fd7b21's, counting Quantum Field Theory II - 页 2 0cc175b9c0f1b6a831c399e269772661 only for the set that matches the membership behavior of Quantum Field Theory II - 页 2 0cc175b9c0f1b6a831c399e269772661, if Quantum Field Theory II - 页 2 5dbc98dcc983a70728bd082d1a47546e runs through all subsets of Quantum Field Theory II - 页 2 7fc56270e7a70fa81a5935b72eacbe29 (as in the definition of Quantum Field Theory II - 页 2 916bf0ad44e834e1edfa891fc43daf90).Since Quantum Field Theory II - 页 2 A95f4031b55c1fe6ac340f9ab52b2d96, we obtain from (**) with Quantum Field Theory II - 页 2 980c036c7bbcda876bd3f93bc3b6c9f9 thatQuantum Field Theory II - 页 2 7fb7a267684599f0c90e6dbc9f8b13f8and by interchanging sides, the combinatorial and the probabilistic version of the inclusion–exclusion principle follow.
If one sees a number Quantum Field Theory II - 页 2 7b8b965ad4bca0e41ab51de7b31363a1 as a set of its prime factors, then (**) is a generalization of Möbius inversion formula for square-free natural numbers. Therefore, (**) is seen as the Möbius inversion formula for theincidence algebra of the partially ordered set of all subsets of A.
For a generalization of the full version of Möbius inversion formula, (**) must be generalized to multisets. For multisets instead of sets, (**) becomes
Quantum Field Theory II - 页 2 Fbdc00c4750553f0a625962d9801e3c5
where Quantum Field Theory II - 页 2 46e6788bba49905b2aece0dd2e986f6b is the multiset for which Quantum Field Theory II - 页 2 Ad166e82d19eb8fc40ed99d77734f563, and[/ltr]


  • μ(S) = 1 if S is a set (i.e. a multiset without double elements) of evencardinality.
  • μ(S) = −1 if S is a set (i.e. a multiset without double elements) of odd cardinality.
  • μ(S) = 0 if S is a proper multiset (i.e. S has double elements).


[ltr]
Notice that Quantum Field Theory II - 页 2 B72bb92668acc30b4474caff40274044Quantum Field Theory II - 页 2 5d03f8a71d3b39739eb148c9ddc38296 is just the Quantum Field Theory II - 页 2 16c7c1fc2ed35af085b28cab86220f19 of (**) in case Quantum Field Theory II - 页 2 46e6788bba49905b2aece0dd2e986f6b is a set.
Proof of (***): Substitute
Quantum Field Theory II - 页 2 97beabf6bfc9bf8cc421ee5d9f53fd8a
on the right hand side of (***). Notice that Quantum Field Theory II - 页 2 Fa1e95b77f0e486fa5738b876146cfec appears once on both sides of (***). So we must show that for all Quantum Field Theory II - 页 2 B9ece18c950afbfa6b0fdbfa4ff731d3 with Quantum Field Theory II - 页 2 Cd03d91a520ad178a1c5e7fae5a6f240, the terms Quantum Field Theory II - 页 2 B053b8f225fcc290ba66114eadc9d163 cancel out on the right hand side of (***). For that purpose, take a fixed Quantum Field Theory II - 页 2 B9ece18c950afbfa6b0fdbfa4ff731d3 such that Quantum Field Theory II - 页 2 Cd03d91a520ad178a1c5e7fae5a6f240 and take an arbitrary fixed Quantum Field Theory II - 页 2 186d877666fa2c6f92794b782c19456a such that Quantum Field Theory II - 页 2 10e1d780511849787481b563eb210728.
Notice that Quantum Field Theory II - 页 2 46e6788bba49905b2aece0dd2e986f6b must be a set for each positive or negativeappearance of Quantum Field Theory II - 页 2 B053b8f225fcc290ba66114eadc9d163 on the right hand side of (***) that is obtained by way of the multiset Quantum Field Theory II - 页 2 5dbc98dcc983a70728bd082d1a47546e such that Quantum Field Theory II - 页 2 66d00d853002ea0cd66c50ca1edde875. Now each appearance of Quantum Field Theory II - 页 2 B053b8f225fcc290ba66114eadc9d163 on the right hand side of (***) that is obtained by way of Quantum Field Theory II - 页 2 5dbc98dcc983a70728bd082d1a47546e such that Quantum Field Theory II - 页 2 46e6788bba49905b2aece0dd2e986f6b is a set that contains Quantum Field Theory II - 页 2 0cc175b9c0f1b6a831c399e269772661 cancels out with the one that is obtained by way of the corresponding Quantum Field Theory II - 页 2 5dbc98dcc983a70728bd082d1a47546e such that Quantum Field Theory II - 页 2 46e6788bba49905b2aece0dd2e986f6b is a set that does not contain Quantum Field Theory II - 页 2 0cc175b9c0f1b6a831c399e269772661. This gives the desired result.
Applications[edit]
The inclusion–exclusion principle is widely used and only a few of its applications can be mentioned here.
Counting derangements[edit]
Main article: Derangement
A well-known application of the inclusion–exclusion principle is to the combinatorial problem of counting all derangements of a finite set. Aderangement of a set A is a bijection from A into itself that has no fixed points. Via the inclusion–exclusion principle one can show that if the cardinality of A is n, then the number of derangements is [n! / e] where [x] denotes the nearest integer to x; a detailed proof is available here and also see the examples section above.
The first occurrence of the problem of counting the number of derangements is in an early book on games of chance: Essai d'analyse sur les jeux de hazard by P. R. de Montmort (1678 – 1719) and was known as either "Montmort's problem" or by the name he gave it, "problème des rencontres."[11] The problem is also known as the hatcheck problem.
The number of derangements is also known as the subfactorial of n, written !n. It follows that if all bijections are assigned the same probability then the probability that a random bijection is a derangement quickly approaches 1/e as n grows.
Counting intersections[edit]
The principle of inclusion–exclusion, combined with De Morgan's law, can be used to count the cardinality of the intersection of sets as well. Let Quantum Field Theory II - 页 2 4f0e22445c1badef4e432be379edaf60represent the complement of Ak with respect to some universal set A such that Quantum Field Theory II - 页 2 89e644d4b3183a48fa02e4d610a051e7 for each k. Then we have
Quantum Field Theory II - 页 2 62cf0321fac59ffa75a38c45c943219c
thereby turning the problem of finding an intersection into the problem of finding a union.[/ltr]


由一星于2014-08-16, 03:09进行了最后一次编辑,总共编辑了1次
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-16, 03:07

[ltr]Graph coloring[size=13][edit]
The inclusion exclusion principle forms the basis of algorithms for a number of NP-hard graph partitioning problems, such as graph coloring.[12]
A well known application of the principle is the construction of thechromatic polynomial of a graph.[13]
Bipartite graph perfect matchings[edit]
The number of perfect matchings of a bipartite graph can be calculated using the principle.[14]
Number of onto functions[edit]
Given finite sets A and B, how many surjective functions (onto functions) are there from A to B? Without any loss of generality we may take A = {1,2,...,k} and B = {1,2,...,n}, since only the cardinalities of the sets matter. By using S as the set of all functions from A to B, and defining, for each i inB, the property Pi as "the function misses the element i in B" (i is not in theimage of the function), the principle of inclusion–exclusion gives the number of onto functions between A and B as:[15]
Quantum Field Theory II - 页 2 E4e78b7abe51d0d2ccdb4efac60c89d8
Permutations with forbidden positions[edit]
permutation of the set S = {1,2,...,n} where each element of S is restricted to not being in certain positions (here the permutation is considered as an ordering of the elements of S) is called a permutation with forbidden positions. For example, with S = {1,2,3,4}, the permutations with the restriction that the element 1 can not be in positions 1 or 3, and the element 2 can not be in position 4 are: 2134, 2143, 3124, 4123, 2341, 2431, 3241, 3421, 4231 and 4321. By letting Ai be the set of positions that the element i is not allowed to be in, and the property Pi to be the property that a permutation puts element i into a position in Ai, the principle of inclusion–exclusion can be used to count the number of permutations which satisfy all the restrictions.[16]
In the given example, there are 12 = 2(3!) permutations with property P1, 6 = 3! permutations with property P2 and no permutations have propertiesP3 or P4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus:
4! - (12 + 6 + 0 + 0) + (4) = 24 - 18 + 4 = 10.
The final 4 in this computation is the number of permutations having both properties P1 and P2. There are no other non-zero contributions to the formula.
Stirling numbers of the second kind[edit]
Main article: Stirling numbers of the second kind
The Stirling numbers of the second kindS(n,k) count the number ofpartitions of a set of n elements into k non-empty subsets (indistinguishable boxes). An explicit formula for them can be obtained by applying the principle of inclusion–exclusion to a very closely related problem, namely, counting the number of partitions of an n-set into k non-empty but distinguishable boxes (ordered non-empty subsets). Using the universal set consisting of all partitions of the n-set into k (possibly empty) distinguishable boxes, A1A2, ..., Ak, and the properties Pi meaning that the partition has box Ai empty, the principle of inclusion–exclusion gives an answer for the related result. Dividing by k! to remove the artificial ordering gives the Stirling number of the second kind:[17]
Quantum Field Theory II - 页 2 7ab527f92b7ae9ff4cec2759eb9c4387
Rook polynomials[edit]
Main article: Rook polynomial
A rook polynomial is the generating function of the number of ways to place non-attacking rooks on a board B that looks like a subset of the squares of a checkerboard; that is, no two rooks may be in the same row or column. The board B is any subset of the squares of a rectangular board with n rows and m columns; we think of it as the squares in which one is allowed to put a rook. The coefficientrk(B) of xk in the rook polynomial RB(x) is the number of ways k rooks, none of which attacks another, can be arranged in the squares of B. For any board B, there is a complementary board B' consisting of the squares of the rectangular board that are not in B. This complementary board also has a rook polynomial RB' (x) with coefficients rk(B').
It is sometimes convenient to be able to calculate the highest coefficient of a rook polynomial in terms of the coefficients of the rook polynomial of the complementary board. Without loss of generality we can assume that n ≤m, so this coefficient is rn(B). The number of ways to place n non-attacking rooks on the complete n × m "checkerboard" (without regard as to whether the rooks are placed in the squares of the board B) is given by the falling factorial:
Quantum Field Theory II - 页 2 8a8768e1ea7571ce2a05aa3c64e6098d
Letting Pi be the property that an assignment of n non-attacking rooks on the complete board has a rook in column i which is not in a square of the board B, then by the principle of inclusion–exclusion we have:[18]
Quantum Field Theory II - 页 2 1a933ab208c036f011ea6ae97d3919be
Euler's phi function[edit]
Main article: Euler's totient function
Euler's totient or phi function, φ(n) is an arithmetic function that counts the number of positive integers less than or equal to n that are relatively primeto n. That is, if n is a positive integer, then φ(n) is the number of integers kin the range 1 ≤ k ≤ n which have no common factor with n other than 1. The principle of inclusion–exclusion is used to obtain a formula for φ(n). Let S be the set {1,2,...,n} and define the property Pi to be that a number in S is divisible by the prime number pi, for 1 ≤ i ≤ r, where the prime factorization of
Quantum Field Theory II - 页 2 5ca666888e554434ea28bf04700d9fd7
Then,[19]
Quantum Field Theory II - 页 2 8c67a74cbdf2c60c861900546b4c823c
Diluted inclusion–exclusion principle[edit]
See also: Bonferroni inequalities
In many cases where the principle could give an exact formula (in particular, counting prime numbers using the sieve of Eratosthenes), the formula arising doesn't offer useful content because the number of terms in it is excessive. If each term individually can be estimated accurately, the accumulation of errors may imply that the inclusion–exclusion formula isn't directly applicable. In number theory, this difficulty was addressed by Viggo Brun. After a slow start, his ideas were taken up by others, and a large variety of sieve methods developed. These for example may try to find upper bounds for the "sieved" sets, rather than an exact formula.
Let A1, ..., An be arbitrary sets and p1, ..., pn real numbers in the closed unit interval [0,1]. Then, for every even number k in {0, ..., n}, the indicator functions satisfy the inequality:[20]
Quantum Field Theory II - 页 2 073bc49e833bbfd1d52e3f793bbd17ed
Proof[edit]
Let A denote the union Quantum Field Theory II - 页 2 E3a958e04dd31d76cfe00e52ef2d98ea of the sets A1, ..., An. To prove the inclusion–exclusion principle in general, we first have to verify the identity
Quantum Field Theory II - 页 2 22ea6891933ecb133902d75dc06bb4d0
for indicator functions, where
Quantum Field Theory II - 页 2 6da31b5ed208f2c77bf6a655010b65c6
There are at least two ways to do this:
First possibility: It suffices to do this for every x in the union of A1, ..., An. Suppose x belongs to exactly m sets with 1 ≤ m ≤ n, for simplicity of notation say A1, ..., Am. Then the identity at x reduces to
Quantum Field Theory II - 页 2 1aaa05de47b65ce03f133ffc229f6cdb
The number of subsets of cardinality k of an m-element set is the combinatorical interpretation of the binomial coefficient Quantum Field Theory II - 页 2 1ae8c5d9c755d1e09894336eb821b305 . Since Quantum Field Theory II - 页 2 1b9b0ac62f6c0e826f2ca7cc8bdc5f48 , we have
Quantum Field Theory II - 页 2 1818ea761611213cf2d4cb85c0a93e04
Putting all terms to the left-hand side of the equation, we obtain the expansion for (1 – 1)m given by the binomial theorem, hence we see that (*) is true for x.
Second possibility: The following function is identically zero
Quantum Field Theory II - 页 2 0cfcdf6d8ad68effd15ff0dfdd970560
because: if x is not in A, then all factors are 0 − 0 = 0; and otherwise, if xdoes belong to some Am, then the corresponding mth factor is 1 − 1 = 0. By expanding the product on the left-hand side, equation (*) follows.
Use of (*): To prove the inclusion–exclusion principle for the cardinality of sets, sum the equation (*) over all x in the union of A1, ..., An. To derive the version used in probability, take the expectation in (*). In general,integrate the equation (*) with respect to μ. Always use linearity.
Alternative proof[edit]
Pick an element contained in the union of all sets and let Quantum Field Theory II - 页 2 68c495bf5ab6828161f734ffdacba14e be the individual sets containing it. (Note that t > 0.) Since the element is counted precisely once by the left-hand side of the equation, we need to show that it is counted precisely once by the right-hand side. By the binomial theorem,
Quantum Field Theory II - 页 2 3c884bc43492ba9cf32b60d131ccbe32.
Using the fact that Quantum Field Theory II - 页 2 3c4c0b5e0f470154811f9788bf7a5296 and rearranging terms, we have
Quantum Field Theory II - 页 2 8be625e8e5124690db9577749407cbb0
and so the chosen element is indeed counted only once by the right-hand side of the proposed equation.
See also[edit]
[/ltr][/size]
[size][ltr]
Notes[edit]
[/ltr][/size]

  1. Jump up to:a b Roberts & Tesman 2009, pg. 405
  2. Jump up^ Mazur 2010, pg. 94
  3. Jump up^ van Lint & Wilson 1992, pg. 77
  4. Jump up^ van Lint & Wilson 1992, pg. 77
  5. Jump up^ Stanley 1986, pg. 64
  6. Jump up^ Rota, Gian-Carlo (1964), "On the foundations of combinatoial theory I. Theory of Möbius functions", Zeitschrift fur Wahrscheinlichkeitstheorie 2: 340–368
  7. Jump up^ Mazur 2010, pp. 83–4, 88
  8. Jump up^ Brualdi 2010, pp. 167–8
  9. Jump up^ Cameron 1994, pg. 78
  10. Jump up^ Graham, Grotschel & Lovasz 1995, pg. 1049
  11. Jump up^ van Lint & Wilson 1992, pp. 77-8
  12. Jump up^ Björklund, Husfeldt & Koivisto 2009
  13. Jump up^ Gross 2008, pp. 211–13
  14. Jump up^ Gross 2008, pp. 208–10
  15. Jump up^ Mazur 2008, pp.84-5, 90
  16. Jump up^ Brualdi 2010, pp. 177–81
  17. Jump up^ Brualdi 2010, pp. 282–7
  18. Jump up^ Roberts & Tesman 2009, pp.419–20
  19. Jump up^ van Lint & Wilson 1992, pg. 73
  20. Jump up^ (Fernández, Fröhlich & Alan D. 1992, Proposition 12.6)

[size][ltr]
References[edit]
[/ltr][/size]
[size][ltr]
This article incorporates material from principle of inclusion–exclusion onPlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.[/ltr][/size]

一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-16, 05:00

4. The Strategy of Equivalence Classes in
Mathematics
Quantum states are equivalence classes. Global physical fields are sections
of bundles.
Folklore
One of the main strategies in the sciences consists in using classifications. This
means that we put single objects into classes. Instead of studying individual objects,
we investigate the properties of classes. This is a simple, but extremely powerful
general strategy. For example, the first systematic classification of plants and
animals was developed by the Swedish biologist Carl von Linn´e (1707–1778). Baron
de la Br`ede et de Montesquieu (1689–1755) said:
Intelligence consists of this; that we recognize the similarity of different
things and the difference between similar ones.
In terms of mathematics, this corresponds to introducing operations for equivalence
classes. In this series of monographs, we will study the following topics:
(I) Simplifying mathematical theories or justifying formal approaches by introducing
ideal elements:
• imaginary numbers (solution of algebraic equations, theory of analytic functions,
Fourier transform, quantum theory, conformal field theory, string theory),
• infinite points in projective geometry (e.g., the compactification of algebraic
curves, compact Riemann su***ces, elliptic and Abelian integrals),
• generalized derivatives and distributions (e.g., the Dirac delta function),
• Mikusi´nski’s superfunctions (or operators) in electrical engineering (justification
of the Heaviside calculus),
• Sato’s hyperfunctions (generalized analytic functions, applications to partial
differential equations),
• cardinal and ordinal numbers, transfinite induction (Cantor’s structuring of
the infinite),
• justification of Leibniz’s infinitesimals in non-standard analysis via ultrafilters.
(II) Equivalence classes in algebra:
• the Gaussian ring of integers modulo a fixed integer, and the quadratic reciprocity
law in number theory,
• the Gaussian ring, the Fermat–Euler theorem, and a modern coding algorithm,
• the construction of algebraic objects that satisfy prescribed relations (e.g.,
complex numbers, quaternions, octions, tensor algebras, Grassmann algebras,
Clifford algebras, universal envelopping algebra of a Lie algebra, supersymmetric
algebras, and quantum groups),
• quotient structures (e.g., quotien groups, quotient rings, quotient algebras,
quotient fields),
• the quotient field over the convolution ring of continuous functions (Mikusi
´nski’s rigorous approach to the Heaviside calculus in electrical engineering),
• field extensions (e.g., algebraic equations and Galois theory, algebraic numbers,
rational functions),
• central extensions of groups and Lie algebras (Bargmann’s theorem on the
projective representations of the Poincar´e group, the Virasoro algebra and
conformal quantum field theory),
• exact sequences, chain complexes, homology groups, and homological algebra,
• the cohomology of groups or Lie algebras,
• direct (resp. codirect) limits of sets, linear spaces, groups, function spaces,
spaces of generalized functions (distributions), and topological spaces (e.g.,
ˆCech cohomology),1
• the strategy of generalized physical fields (fiber bundles, sheaves, Grothendieck’s
schemes in algebraic geometry, algebraic K-theory),
• the strategy of coordinatization (duality, Hopf algebras, quantum groups),
• the strategy of motives in number theory,
• categories and functors as a general tool in order to describe mathematical
structures.
(III) Equivalence classes in analysis:
• Cantor’s construction of real numbers as equivalence classes of Cauchy sequences,
the completion of metric spaces, and Hensel’s p-adic numbers,
• completion of a normed space to a Banach space: the Lebesgue integral,
Sobolev spaces and the energetic approach to both the partial differential
equations of mathematical physics and the calculus of variations (e.g., the
justification of the Dirichlet principle in electrostatics),
• the completion of a pre-Hilbert space and the Gelfand–Naimark–Segal
(GNS) construction for C

-algebras in the algebraic approach to quantum
theory.
• The Riemann–Hilbert problem and the Birkhoff decomposition (the Connes–
Kreimer approach to renormalization and renormalization groups, the universal
Connes–Kreimer–Moscovici Hopf algebra),
• the motivic Galois group in renormalization group theory due to Connes and
Marcolli.
(IV) Equivalence classes in geometry:
• homogeneous spaces and transformation groups (orbit spaces and orbit types
in gauge field theory),
• spaces of quantum states and projective geometry (e.g., the Hopf fibration
and the electron spin),
• curvature and fiber bundles (the Standard Model in elementary particle
physics),
• universal covering of a Lie group (e.g., the electron spin),
• universal covering of a Riemann su***ce; scattering of strings; global parametrization
(uniformization) of Riemann su***ces and algebraic varieties, algebraic
functions and Abelian integrals, Riemann’s moduli space of Riemann
su***ces,
• the Teichm¨uller space as a universal covering of Riemann’s moduli space,
• Riemann’s holonomy group of a differential equation (differential equations
of Fuchsian type and special functions like Gauss’ hypergeometric function),
• holonomy group of a principal fiber bundle (the Ashtekar approach to quantum
gravitation),
• lattices as quotient groups and special functions (periodic functions, elliptic
functions, automorphic functions, modular functions, theta functions, Jacobi
varieties),
• sheaf theory, cohomology with values in a sheaf, and the global construction
of analytic functions and differentials, divisors and line bundles (the Cousin
problems, Abelian integrals, the Riemann–Roch–Hirzebruch theorem),
• sheaves and Grothendieck’s schemes in algebraic geometry and number theory
(e.g., local rings, divisors),
• K-theory of operator algebras (noncommutative geometry and quantum field
theory).
• Quantization of gauge theories via the Faddeev–Popov method (pseudomeasure
on the orbit space induced by the gauge group, factorization of
the Feynman functional integral, ghosts).
(V) Equivalence classes in topology:
• bundles and cocycles (physical fields and observers),
• topological quotient spaces (e.g., the topology of projective spaces or the
spectrum of a quantum operator as the space of maximal ideals in the
Gelfand theory of C

-algebras),
• fundamental group and higher homotopy groups of a topological space,
• homology groups of a topological space (e.g., the Lefschetz fixed-point theorem),
• cohomology groups of a topological space (e.g., electrical circuits, topological
charges of physical fields, de Rham cohomology, characteristic classes,
Chern class, Thom class, Stiefel–Whitney class, existence of the 4-potential
in Maxwell’s theory of electromagnetism),
• dynamical systems and Floer homology (generalized Morse theory),
• dynamical systems and the Conley index as the homotopy type of a topological
space (generalized Morse theory),
• Grothendieck’s algebraic K-theory and the Riemann–Roch–Hirzebruch theorem,
• the Atiyah–Hirzebruch topological K-theory (generalized cohomology) of
topological spaces (index of Fredholm operators, Atiyah–Singer index theorem,
homotopy groups of the space of Fredholm operators of a Hilbert space,
vector fields on spheres, string theory),
• Frobenius manifolds, moduli spaces, and quantum cohomology.
This impressive list of deep tools in mathematics and its relations to physics shows
that:
Equivalence classes are everywhere in mathematics and physics.
The reader should note the following. One of the most important tools in modern
mathematics are bundles, which globalize classical notions like linear spaces, Lie
groups, and so on. We want to show that:
Bundles in mathematics are closely related to physical fields.
This helps to understand many deep relations between modern mathematics and
modern physics.

Equivalence relation. We are given the set X. Suppose that, for certain
elements x and y of X, there exists a relation x ∼ y which has the properties
(R), (S), and (T) above. Then the relation ’∼’ is called an equivalence relation.
Introduce the equivalence class [x] of the element x by setting
[x] := {y ∈ X : x ∼ y}.
The elements of [x] are called the representatives of the equivalence class.
Proposition 4.1 The equivalence classes yield a partition of the set X into pairwise
disjoint subsets [x].
The set of these equivalence classes is denoted by the symbol
X/ ∼ := { [x] : x ∈ X}.
This set is called the quotient space with respect to the equivalence relation ’∼’.
Proof. If z ∈ [x] and z ∈ [y], then x ∼ z, y ∼ z. Hence x ∼ y, by symmetry and
transitivity. This implies [x] = [y]. Conversely, if [x] = [y], then x ∼ y. Thus, either
two equivalence classes coincide or they are disjoint. 
We will show on page 199 that quantum states are equivalence classes.

4.1 Equivalence Classes in Algebra
Let us discuss the basic ideas about quotient structures in algebra.
4.1.1 The Gaussian Quotient Ring and the Quadratic Reciprocity
Law in Number Theory
Gauss is supposed to have discovered a proof of the law of quadratic reciprocity
in 1796 when he was nineteen. . . This law, which Gauss called the
gem of arithmetic, is a basic result on congruences. After Gauss gave his
six proofs, more than fifty others were given by later mathematicians.2.
Morris Kline, 1990
The ring Z of integers. Let R denote the set Z of integers 0,±1,±2, . . . Then,
for all a, b, c ∈ R, the following hold:
(R0) Consistency: a + b, ab ∈ R.
(R1) Additivity: R is an additive group.3
(R2) Distributivity: (a + b)c = ac + bc and c(a + b) = ca + cb.
(R3) Associativity: (ab)c = a(bc).
(R4) Commutativity: ab = ba.
(R5) Unitality: There exists an element 1 (called the unit element of R) such that
1a = a1 = a for all a ∈ R.
A set R is called a ring iff there exist an addition a+b and a multiplication ab for all
a, b ∈ R such that the properties (R0)–(R3) are satisfied. If, in addition, property
(R4) is also met, then the ring is called commutative. Using this terminology, the
ring Z of integers is a commutative ring with unit element 1.
• A ring R with unit element 1 is called a skew-field iff, for any given nonzero
element a, there exists an element in R denoted by a−1 such that we have the
relation4 aa−1 = a−1a = 1.
• A commutative skew-field is called a field.5
For example, the sets Q (rational numbers), R (real numbers), C (complex numbers)
are fields, whereas the set H of quaternions is only a skew-field.6
A subset S of the ring R is called a subring iff it is a ring with respect to the
operations on R. By definition, a two-sided ideal S of a ring R is a subring with
sr ∈ R and rs ∈ R for all s ∈ S, r ∈ R.
In a commutative ring, two-sided ideals are briefly called ideals.7 For a fixed integer
m, we set
mZ := {mk : k ∈ Z}.
Obviously, mZ is an ideal of Z. We call this the ideal generated by the integer m.
We also briefly write (m) instead of mZ.
By a ring morphism, we understand a map
χ : R → T (4.1)
between the rings R and T which respects addition and multiplication, that is, for
all a, b ∈ R, we have
χ(a + b) = χ(a) + χ(b), χ(ab) = χ(a)χ(b). (4.2)
If R and T are fields, then the map (4.1) is called a field morphism iff (4.2) holds.
Bijective field morphisms are called field isomorphisms. Analogously, we define morphisms
and isomorphisms for skew-fields.
The Gaussian ring Z/mod m of residue classes modulo m. Choose a fixed
integer m. Let x, y ∈ Z. Following Gauss we write
x ≡ y mod m iff x − y ∈ (m).
This is an equivalence relation (also called congruence relation). The equivalence
classes are denoted by [x]. They are also called residue classes. In other words, x is
congruent to y modulo m iff the difference x − y is divisible by the integer m. For
example, if m = 3, then 2 ≡ 5 mod 3, and there are precisely three equivalence
classes [0], [1], [2], namely,
[0] = (m), [1] = 1 + (m) = {1, 1 ± 3, 1 ± 6, 1 ± 9 . . .}, [2] = 2 + (m).
In particular, the representatives of [2] are 2, 5, 8, . . . ,−1,−4,−7 . . . Addition and
multiplication of residue classes are defined by
[x] + [y] := [x + y], [x][y] = [xy].
This definition does not depend on the choice of the representatives.8 For example, if
m = 2, then [2]+[1] = [3] = [1], and [2] = [4], [1] = [7], as well as [4]+[7] = [11] = [1].
The operations for the two elements of Z/mod 2 are given by
[1] + [1] = [0], [0] + [1] = [1] + [0] = [1], [0] + [0] = [0], (4.3)
and [0][1] = [1][0] = [0] and [1][1] = [1]. Thus, Z/mod 2 is a field (also briefly
denoted by Z2). The same result can be obtained by computing with integers and
by setting ’2 = 0’. For example,
5 + 8 = 13 = 1 + 6 · 2 = 1, 5 · 8 = 40 = 20 · 2 = 0.
This corresponds to [5] + [8] = [13] = [1] and [5][8] = [40] = [0]. In the following
proposition, assume that m = 1, 2, 3, . . . .
Proposition 4.2 (i) The quotient space Z/mod m is a commutative ring with the
unit element [1].
(ii) The quotient ring Z/mod m is a field iff m is a prime number.
(iii) The order of a finite field is a prime power.
(iv) Conversely, for any given prime power pn, there is a unique finite field of
order pn (up to isomorphism).
(v) Each finite skew-field is a field.
Finite fields are also called Galois fields. The proofs can be found in the standard
textbooks on algebra. We refer to:
B. van der Waerden, Moderne Algebra, Vols. 1, 2, Springer, Berlin, 1930,
8th edition, 1993 (in German). English edition: Modern Algebra, Frederyck
Ungar, New York, 1975.
S. Lang, Algebra, Springer, New York, 2002.
In the literature, one also writes Zm instead of Z/mod m. For example, the additive
group Z2 from (4.3) is isomorphic to the multiplicative group {1,−1}. The
isomorphism is given by
[0] → 1, [1] →−1.

Further constructions for linear spaces. In addition to the preceding material,
there exist the following constructions for linear spaces X, Y,Xα:
• the inductive (or direct) limit: lim indα∈AXα (Sect. 4.5.5);
• the projective (or inverse) limit: lim projα∈AXα (Sect. 4.5.5);
• the K-ring K(VectK) generated by the semi-ring of finite-dimensional vector
spaces over K (Sect. 4.4.9);
• the K-ring KK(X) generated by the semi-ring of vector bundles of finite rank on
the topological space X (Sect. 4.4.9);
• the tensor product X ⊗ Y , and the tensor algebra N(X) (Vol. III);
• the algebra A(X) of antisymmetric multilinear functionals, and the Grassmann
(or exterior) algebra V(X) (Vol. III);

4.2 Superfunctions and the Heaviside Calculus in
Electrical Engineering
The historical experience of mathematicians shows that successful formal
approaches invented by physicists can be rigorously justified, possibly, after
large time delay. For example, this concerns Heaviside’s calculus in electrical
engineering (Laplace transform and Mikusi´nski’s operational calculus),
Dirac’s delta function in quantum mechanics (Laurent Schwartz’s theory
of distributions), Dirac’s operator calculus (Gelfand triplets and distributions),
and Leibniz’s infinitesimals in calculus (Robinson’s non-standard
analysis). There is no reason why there should not emerge a rigorous justification
of quantum field theory in the future.
Folklore
In this book, the operators of the Heaviside calculus in electrical engineering
are represented by (abstract) fractions of continuous functions.13
Jan Mikusi´nski, 1959
• the algebra S(X) of symmetric multilinear functionals, and the symmetric algebra
J(X) (Vol. III);
• the Clifford (or inner) algebra W(X) (Vol. III).

4.3 Equivalence Classes in Geometry
Geometry is the invariant theory of groups of transformations.
Felix Klein
Erlangen program 1872
4.3.1 The Basic Idea of Geometry Epitomized by Klein’s
Erlangen Program
The geometry known in ancient times was Euclidean geometry, and it dominated
mathematics for over 2000 years. The famous question as to the existence of non–
Euclidean geometries led in the nineteenth century to the description of a series
of different geometries. This being established, it was natural to consider the classification
of possible geometries. Felix Klein (1849–1925) solved this problem and
showed in 1872 with his Erlangen program that geometries can be conveniently
classified by means of group theory. A geometry requires a group G of transformations.
Every property or quantity remaining invariant under the action of the
group G is a property of the associated geometry, which is therefore also referred to
as a G-geometry. For example, the Euclidean geometry corresponds to invariants
under the Euclidean group of motions, which consists of translations and rotations.
In particular, the distance between two points is a property of Euclidean geometry.
For the modern version of Klein’s Erlangen program, we refer to:
R. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen
Program, Springer, New York, 1997.
4.3.2 Symmetry Spaces, Orbit Spaces, and Homogeneous Spaces
A G-space (X,G) describes a geometry on the space X which possesses
the symmetry group G.
Folklore
In gauge theory, orbit spaces play a fundamental role. For example, in the Standard
Model in particle physics, the orbits under the action of the gauge group represent
the same physical state. Since the Feynman functional integral has to be taken over
physical states, this integral becomes an integral over an orbit space of the gauge
group. This is the idea of the method of Faddeev–Popov quantization in gauge
theory (see Chap. 16 of Vol. I). At this point, we want to discuss same basic ideas
of orbit spaces in geometry and theirs relations to quantum states and projective
spaces.

the orbit space C/U(1) can be identified with the interval [0,∞[,
which is not a manifold, but only a manifold with boundary.
Typically, orbit spaces are not manifolds, since they have singularities.

Klein spaces. Let X be a set, and let G be a group. The set of all bijections
A : X → X
forms a group which is called the automorphism group of X. This group is denoted
by Aut(X). The ordered pair
(X,G)
is called a Klein space (or G-space) iff there exists a group morphism
 : G → Aut(X).

4.3.4 Real Projective Spaces
Algebraic geometry is undoubtedly the area of mathematics where the deviation
is greatest between the intuitive ideas forming its starting point
and the abstract and complex concepts at the foundation of modern research.
. . The history of algebraic geometry has been divided into seven
epochs:
(i) 400 B.C.–1630 A.D.: Prehistory (theory of conics by Appolonius of
Perga).
(ii) 1630–1795: Exploration of plane curves (Descartes, Newton, Leibniz,
Euler, Maclaurin, B´ezout).
(iii) 1795–1850: The golden age of projective geometry (Poncelet, M¨obius,
Pl¨ucker).
(iv) 1850–1866: Riemann and conformal (birational) geometry.
(v) 1866–1920: Development and chaos.
(vi) 1920–1950: New structures in algebraic geometry (Poincar´e, ´Elie Cartan,
Hodge, de Rham, Lefschetz, K¨ahler, Weil, Kodaira).
(vii) 1950ff: Sheaves (Leray, Henri Cartan, Serre), the Riemann–Roch–
Hirzebruch theorem (Hirzebruch), and schemes (Grothendieck).
The fourth epoch is without any doubt the most important of all in the
history of algebraic geometry to this day. It is entirely stamped by the work
of one man, one of the greatest mathematicians who ever lived, and also
one of those who have had, most profoundly, the perception (or divination)
of the essential unity of mathematics.17
Jean Dieudonn´e, 1985

In mathematics, one always tries to cure imperfect situations by introducing
ideal elements.

4.4 Equivalence Classes in Topology
Though I travelled many different roads, I always encountered analysis
situs (topology).
Henri Poincar´e (1854–1912)
Topology has its roots in geometric intuition, the theory of analytic functions,
the theory of Abelian integrals over algebraic functions, and in
physics.
Folklore
4.4.1 Topological Quotient Spaces
In this Section, we need the notions ‘topological space’ and ‘topology’ introduced
in Sect. 5.5 of Vol. I.
Quotient topology. Let X be a topological space. Suppose that we are given
an equivalence relation ∼ on X. We have the canonical projection
π : X → X/ ∼ (4.18)
given by π(x) := [x]. We want to equip the quotient space X/ ∼ of equivalence
classes [x] with a natural topology. To this end, we define:
A subset S of the quotient space X/ ∼ is called open iff the set of all the
corresponding representatives is open in the original space X.
In other words, a subset S of X/ ∼ is called open iff the set
π−1(S) is an open subset of X.
Then the map π from (4.18) has the obvious property that the pre-images of open
sets are again open. Thus, π is continuous.
Examples. Topological quotient spaces are everywhere in mathematics and physics.
Let us consider a few simple examples.

4.4.2 Physical Fields, Observers, Bundles, and Cocycles
Physical fields can be described by bundles in mathematics. The change
of the real values measured by different observers corresponds to cocyles.
Folklore
We want to show how the modern mathematical language of bundles fits physics
in a quite natural way. The point is that we have to model mathematically the
following situation:
• Three observers measure the same physical effect.
• The transformation laws between the measured quantities are governed by the
fact that physics has an invariant meaning; this means, that physics is independent
of the specific observers.
This corresponds to the situation in geometry where invariant geometric objects
(e.g., a sphere) are described by different local coordinate systems.

(II) Topology of the bundle space B. We say that the subset O of B is open iff,
for each point [(α, x, vα)] of the set O, there exist
• an open subset Oα of the base space X with x ∈ Oα ⊆ Uα and
• an open subset V of the typical fiber Rn with vα ∈ V
such that
[(α, y,w)] ⊆ Oα for all (y,w) ∈ Oα × V.
One checks in a straightforward manner that this definition of the open set O does
not depend on the choice of the representatives in the bundle charts Uα ×Rn. This
way, the bundle space B becomes a topological space, and the bundle projection
π : B → X is continuous. 
The preceding proof tells us that, for n = 1, 2, . . . , the following hold:
There exists a one-to-one correspondence between real vector bundles of
rank n on the topological space X and cocycles on X with values in the
group GL(n,R).
In terms of physics, this corresponds to the relation between the invariant formulation
of physical fields and the coordinate formulation based on the transformation
laws between different observers.
Operations with vector bundles. In Sect. 3.2, we have studied operations
for linear spaces and linear operators. In a quite natural way, all of these operations
can be translated to vector bundles. Since the fibers are linear spaces, the simple
strategy is to perform the operations with respect to the fibers. This can be easily
done
• by using the corresponding operations for the typical fibers,
• by applying the corresponding operations to the cocycles, and
• by constructing the bundle space via Theorem 4.15.
Let us discuss this. We are given the two real vector bundles V and W of finite
rank with
• the bundle projections π : B → X and σ : C → X,
• the fibers Fx and Gx,
• the typical fibers Rm and Rn, and
• the cocycles Sαβ : Uα ∪ Uβ → GL(m,R) and Tαβ : Uα ∪ Uβ → GL(n,R),
respectively.
First we assume that the two vector bundles V and W refer to the same open
covering {Uα} of the base space X.
(i) Cartesian product: We want to construct the vector bundle V × W with the
fibers Fx ×Gx for all x ∈ X. To this end, we use the typical fiber Rm ×Rn and
the cocycle Sαβ × Tαβ. Explicitly,
(Sαβ × Tαβ)(x)(v,w) = (Sαβ(x)v, Tαβ(x)w).
One checks easily that indeed the Cartesian product Sαβ × Tαβ of cocycles
yields again a cocycle.
(ii) Direct sum: In order to construct the vector bundle V ⊕ W with the fibers
Fx ⊕ Gx for all x ∈ X, we use the typical fiber Rm ⊕ Rn and the cocycle
Sαβ ⊕ Tαβ.
(iii) Tensor product: The tensor product V ⊗ W with the fibers Fx ⊗ Gx for all
x ∈ X is obtained by using the typical fiber Rm⊗Rn and the cocycle Sαβ⊗Tαβ.
If the vector bundles V andW refer to the open coverings {Uα} and {Vβ} of the base
space X, then we apply the construction above to the common covering consisting
of all the intersections Uα ∩Vβ. Finally, it is not difficult to show that the following
hold where the symbol  stands for bundle isomorphims: If V  V and W  W,
then
V ×W  V ×W.
The same is true for V ⊕W and V ⊗W. Therefore, the constructions above do not
depend on the open coverings of the base space X, but only on the isomorphism
classes of the vector bundles.
Generalizations. We have restricted ourselves to real vector bundles. The
same arguments apply to complex vector bundles with the typical fiber Cn. If we
use the replacements
topological space ⇒ manifold,
continuous map ⇒ smooth map, (4.24)
then we get the notion of smooth vector bundles. The cocycles are then smooth
maps. The same arguments apply to more general bundles (e.g., principal fiber
bundles, where the fibers are Lie groups).
Modern differential geometry is based on the idea of parallel transport in
bundles.
This allows us to introduce the notion of curvature. In fact, this represents the
mathematics of the Standard Model in elementary physics for describing the fundamental
forces in nature. The prototype is the Levi-Civita parallel transport of
velocity fields on a sphere (see Vol. III).

4.4.3 Generalized Physical Fields and Sheaves
During World War II, the French mathematician Jean Leray (1906–1998)
was a prisoner of war from 1940 to 1945. He organized a university in
his prison camp and himself gave a course on algebraic topology, a field he
had become interested in connection with his collaboration with the Polish
mathematician Juliusz Schauder (1899–1943) on applications of degree
theory in nonlinear functional analysis.21 Leray became dissatisfied both
with the methods using triangulations and with those using inverse or
direct limits (introduced by ˇCech (1893-1960) in the 1930s). In 1942 he
published a series of four Notes in the Comptes rendus (of the French
Academy of Sciences) outlining a new and original way of defining and
studying cohomology . . .
In May 1946 Leray published two Notes in the Comptes rendus in which he
introduced for the first time the notions of sheaf, sheaf cohomology, and of
spectral sequence. In retrospect, it is difficult to exaggerate the importance
of these concepts, which very rapidly became not only powerful tools in
algebraic topology, but spread to many other parts of mathematics, some
of which seem very remote from topology, such as algebraic geometry,
number theory, and mathematical logic. These applications certainly went
far beyond the wildest dreams of the inventor of these notions, and they
undoubtedly rank at the same level in the history of mathematics as the
methods invented by Poincar´e (1854–1912) and Brouwer (1881–1966) in
classical topology.22
Jean Dieudonn´e, 1989
Let X be an arbitrary set, and let R be a ring. In order to study the structure of
the set X, one can study the space of all the mappings
f : X → R.
In terms of physics, the mapping f can be regarded as a physical field on the space
X (e.g., a space-time manifold) with values in the ring R. For mathematics and
physics, it is important to generalize this concept in the following way. Let X be a
topological space with topology T . Recall that T denotes the family of open subsets
of X.
We assign to each set U ∈ T a ring R(U).
This leads us to the concept of pre-sheaves and sheaves to be studied in later
volumes.

4.4.4 Deformations, Mapping Classes, and Topological Charges
Two continuous mappings are contained in the same mapping class iff
they can be continuously deformed into each other. In important special
cases, the space of mapping classes can be equipped with an additional
group structure. This leads to Poincar´e’s fundamental group and the higher
homotopy groups of topological spaces.
Folklore
The space [X, Y ] of mapping classes. Let X and Y be topological spaces
(e.g., subsets of Rn). For two continuous maps f, g : X → Y , we write
f ∼ g
iff there exists a continuous map H : X × [0, 1] → Y with
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.
This is an equivalence relation. The equivalence classes [f] are called mapping
classes. They form the space [X, Y ] of mapping classes from X to Y .
It is an important task of topology to describe the structure of mapping
classes.
This structure is only known for a collection of special cases. Mathematicians are
looking for ever stronger tools in order to get new information about mapping
classes. The crucial map
(x, t) → H(x, t)
is called a homotopy between the mappings f and g. Intuitively, the mappings f
and g can be viewed as physical fields, and the homotopy H deforms
• the physical field f at the initial time t = 0
• into the physical field g at the final time t = 1.
The deformed value of f(x) at time t is equal to H(x, t). If f ∼ g, then we also say
that f is homotopically equivalent to g.



由一星于2014-08-21, 06:37进行了最后一次编辑,总共编辑了12次
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-16, 05:24

Equivalence class

From Wikipedia, the free encyclopedia








[ltr]This article is about equivalency in mathematics. For equivalency in music, see equivalence class (music).[/ltr]





Quantum Field Theory II - 页 2 U=1734063792,1156247940&fm=23&gp=0



Congruence is an example of an equivalence relation. The two ***s on the left are congruent, while the third and fourth ***s are not congruent to any other ***. Thus, the first two ***s are in the same equivalence class, while the third and fourth ***s are in their own equivalence class.

[ltr]
In mathematics, when a set has an equivalence relation defined on its elements, there is a natural grouping of elements that are related to one another, forming what are called equivalence classes. Notationally, given a set X and an equivalence relation ~ on X, the equivalence class of an element a in X is the subset of all elements in X which are equivalent toa. It follows from the definition of the equivalence relations that the equivalence classes form a partition of X. The set of equivalence classes is sometimes called the quotient set of X by ~ and is denoted by X / ~.
When X has some structure, and the equivalence relation is defined with some connection to this structure, the quotient set often inherits some related structure. Examples include quotient spaces in linear algebra,quotient spaces in topologyquotient groupshomogeneous spaces,quotient ringsquotient monoids, and the quotient category.[/ltr]

[ltr]Contents
  [hide[/ltr]








[ltr]

Notation and formal definition[edit]
An equivalence relation is a binary relation ~ satisfying three properties:[1][/ltr]


  • For every element a in Xa ~ a (reflexivity),
  • For every two elements a and b in X, if a ~ b, then b ~ a (symmetry)
  • For every three elements ab, and c in X, if a ~ b and b ~ c, thena ~ c (transitivity).


[ltr]
The equivalence class of an element a is denoted [a] and is defined as the set
Quantum Field Theory II - 页 2 97fba7991fdf2240487847aaa588a9c0
of elements that are related to a by ~. An alternative notation [a]R can be used to denote the equivalence class of the element a, specifically with respect to the equivalence relation R. This is said to be the R-equivalence class of a.
The set of all equivalence classes in X with respect to an equivalence relation R is denoted as X/R and called X modulo R (or the quotient setof X by R).[2] The surjective map Quantum Field Theory II - 页 2 F08b616f8639b044f2a5574857dccc3b from X onto X/R, which maps each element to its equivalence class, is called the canonical surjectionor the canonical projection map.
When an element is chosen (often implicitly) in each equivalence class, this defines an injective map called a section. If this section is denoted bys, one has [s(c)] = c for every equivalence class c. The element s(c) is called a representative of c. Any element of a class may be chosen as a representative of the class, by choosing the section appropriately.
Sometimes, there is a section that is more "natural" than the other ones. In this case, the representatives are called canonical representatives. For example, in modular arithmetic, consider the equivalence relation on the integers defined by a ~ b if a − b is a multiple of a given integer n, called the modulus. Each class contains a unique non-negative integer smaller than n, and these integers are the canonical representatives. The class and its representative are more or less identified, as is witnessed by the fact that the notation a mod n may denote either the class or its canonical representative (which is the remainder of the division of a by n).
Examples[edit][/ltr]


  • If X is the set of all cars, and ~ is the equivalence relation "has the same color as." then one particular equivalence class consists of all green cars. X/~ could be naturally identified with the set of all car colors (cardinality of X/~ would be the number of all car colors).
  • Let X be the set of all rectangles in a plane, and ~ the equivalence relation "has the same area as". For each positive real number A there will be an equivalence class of all the rectangles that have area A.[3]
  • Consider the modulo 2 equivalence relation on the set Z of integers:x ~ y if and only if their difference x − y is an even number. This relation gives rise to exactly two equivalence classes: one class consisting of all even numbers, and the other consisting of all odd numbers. Under this relation [7][9], and [1] all represent the same element of Z/~.[4]
  • Let X be the set of ordered pairs of integers (a,b) with b not zero, and define an equivalence relation ~ on X according to which (a,b) ~ (c,d)if and only if ad = bc. Then the equivalence class of the pair (a,b) can be identified with the rational number a/b, and this equivalence relation and its equivalence classes can be used to give a formal definition of the set of rational numbers.[5] The same construction can be generalized to the field of fractions of any integral domain.
  • If X consists of all the lines in, say the Euclidean plane, and L ~ Mmeans that L and M are parallel lines, then the set of lines that are parallel to each other form an equivalence class as long as a line is considered parallel to itself. In this situation, each equivalence class determines a point at infinity.


[ltr]
Properties[edit]
Every element x of X is a member of the equivalence class [x]. Every two equivalence classes [x] and [y] are either equal or disjoint. Therefore, the set of all equivalence classes of X forms a partition of X: every element ofX belongs to one and only one equivalence class.[6] Conversely every partition of X comes from an equivalence relation in this way, according to which x ~ y if and only if x and y belong to the same set of the partition.[7]
It follows from the properties of an equivalence relation that
x ~ y if and only if [x] = [y].
In other words, if ~ is an equivalence relation on a set X, and x and y are two elements of X, then these statements are equivalent:[/ltr]


  • Quantum Field Theory II - 页 2 Fb109cb56d684e972d4b4f62f4db7078
  • Quantum Field Theory II - 页 2 63be84aae0ca1995af2d779096090fdc
  • Quantum Field Theory II - 页 2 C9c850e3ad9c2713fb2a72b9d61f0056.


[ltr]
Graphical representation[edit]
Any binary relation can be represented by a directed graph and symmetric ones, such as equivalence relations, by undirected graphs. If ~ is an equivalence relation on a set X, let the vertices of the graph be the elements of X and join vertices s and t if and only if s ~ t. The equivalence classes are represented in this graph by the maximal cliques forming theconnected components of the graph.[8]
Invariants[edit]
If ~ is an equivalence relation on X, and P(x) is a property of elements ofX such that whenever x ~ yP(x) is true if P(y) is true, then the propertyP is said to be an invariant of ~, or well-defined under the relation ~.
A frequent particular case occurs when f is a function from X to another set Y; if f(x1) = f(x2) whenever x1 ~ x2, then f is said to be a morphismfor ~, a class invariant under ~, or simply invariant under ~. This occurs, e.g. in the character theory of finite groups. Some authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".
Any function f : X → Y itself defines an equivalence relation on Xaccording to which x1 ~ x2 if and only if f(x1) = f(x2). The equivalence class of x is the set of all elements in X which get mapped to f(x), i.e. the class [x] is the inverse image of f(x). This equivalence relation is known as the kernel of f.
More generally, a function may map equivalent arguments (under an equivalence relation ~X on X) to equivalent values (under an equivalence relation ~Y on Y). Such a function is known as a morphism from ~X to ~Y.
Quotient space[edit]
In topology, a quotient space is a topological space formed on the set of equivalence classes of an equivalence relation on a topological space using the original space's topology to create the topology on the set of equivalence classes.
In abstract algebracongruence relations on the underlying set of an algebra allow the algebra to induce an algebra on the equivalence classes of the relation, called a quotient algebra. In linear algebra, a quotient space is a vector space formed by taking a quotient group where the quotient homomorphism is a linear map. By extension, in abstract algebra, the term quotient space may be used for quotient modulesquotient rings,quotient groups, or any quotient algebra. However, the use of the term for the more general cases can as often be by analogy with the orbits of a group action.
The orbits of a group action on a set may be called the quotient space of the action on the set, particularly when the orbits of the group action are the right cosets of a subgroup of a group, which arise from the action of the subgroup on the group by left translations, or respectively the left cosets as orbits under right translation.
A normal subgroup of a topological group, acting on the group by translation action, is a quotient space in the senses of topology, abstract algebra, and group actions simultaneously.
Although the term can be used for any equivalence relation's set of equivalence classes, possibly with further structure, the intent of using the term is generally to compare that type of equivalence relation on a set Xeither to an equivalence relation that induces some structure on the set of equivalence classes from a structure of the same kind on X, or to the orbits of a group action. Both the sense of a structure preserved by an equivalence relation and the study of invariants under group actions lead to the definition of invariants of equivalence relations given above.
See also[edit][/ltr]



[ltr]
Notes[edit][/ltr]


  1. Jump up^ Devlin 2004, p. 122
  2. Jump up^ Wolf 1998, p. 178
  3. Jump up^ Avelsgaard 1989, p. 127
  4. Jump up^ Devlin 2004, p. 123
  5. Jump up^ Maddox 2002, pp. 77–78
  6. Jump up^ Maddox 2002, p.74, Thm. 2.5.15
  7. Jump up^ Avelsgaard 1989, p.132, Thm. 3.16
  8. Jump up^ Devlin 2004, p. 123


[ltr]
References[edit][/ltr]


  • Avelsgaard, Carol (1989), Foundations for Advanced Mathematics, Scott Foresman, ISBN 0-673-38152-8
  • Devlin, Keith (2004), Sets, Functions, and Logic: An Introduction to Abstract Mathematics (3rd ed.), Chapman & Hall/ CRC Press,ISBN 978-1-58488-449-1
  • Maddox, Randall B. (2002), Mathematical Thinking and Writing, Harcourt/ Academic Press, ISBN 0-12-464976-9
  • Morash, Ronald P. (1987), Bridge to Abstract Mathematics, Random House, ISBN 0-394-35429-X
  • Wolf, Robert S. (1998), Proof, Logic and Conjecture: A Mathematician's Toolbox, Freeman, ISBN 978-0-7167-3050-7


[ltr]
Further reading[edit]
This material is basic and can be found in any text dealing with the fundamentals of proof technique, such as any of the following:[/ltr]


  • Sundstrom (2003), Mathematical Reasoning: Writing and Proof, Prentice-Hall
  • Smith; Eggen; St.Andre (2006), A Transition to Advanced Mathematics (6th Ed.), Thomson (Brooks/Cole)
  • Schumacher, Carol (1996), Chapter Zero: Fundamental Notions of Abstract Mathematics, Addison-Wesley, ISBN 0-201-82653-4
  • O'Leary (2003), The Structure of Proof: With Logic and Set Theory, Prentice-Hall
  • Lay (2001), Analysis with an introduction to proof, Prentice Hall
  • Gilbert; Vanstone (2005), An Introduction to Mathematical Thinking, Pearson Prentice-Hall
  • Fletcher; Patty, Foundations of Higher Mathematics, PWS-Kent
  • Iglewicz; Stoyle, An Introduction to Mathematical Reasoning, MacMillan
  • D'Angelo; West (2000), Mathematical Thinking: Problem Solving and Proofs, Prentice Hall
  • Cupillari, The Nuts and Bolts of Proofs, Wadsworth
  • Bond, Introduction to Abstract Mathematics, Brooks/Cole
  • Barnier; Feldman (2000), Introduction to Advanced Mathematics, Prentice Hall
  • Ash, A Primer of Abstract Mathematics, MAA


一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-16, 12:59

http://en.wikipedia.org/wiki/Quadratic_reciprocity



Quadratic reciprocity

From Wikipedia, the free encyclopedia







[ltr]"Law of reciprocity" redirects here. For the philosophical concept known as the "ethic of reciprocity", see Golden Rule.
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. There are a number of equivalent statements of the theorem.
Although the law can be used to tell whether any quadratic equation modulo a prime number has a solution, it does not provide any help at all for actually finding the solution. (The article on quadratic residues discusses algorithms for this.)
The theorem was conjectured by Euler and Legendre and first proven by Gauss.[1] He refers to it as the "fundamental theorem" in the Disquisitiones Arithmeticae and his papers, writing
The fundamental theorem must certainly be regarded as one of the most elegant of its type. (Art. 151)
Privately he referred to it as the "golden theorem."[2] He published six proofs, and two more were found in his posthumous papers. There are now over 200 published proofs.[3]
The first section of this article gives a special case of quadratic reciprocity that is representative of the general case. The second section gives the formulations of quadratic reciprocity found by Legendre and Gauss.[/ltr]













[ltr]Contents
  [hide[/ltr]




一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 15:53

分类:抽象代数



[ltr]抽象代数是指数学中以研究代数结构(比如)为主的领域。
[/ltr]
[size][ltr]
子分类
本分类有以下21个子分类,共有21个子分类。
[/ltr][/size]
B

  • [ltr]► 半群论‎ (7个页面)[/ltr]
  • [ltr]► 表示论‎ (3个分类, 15个页面)[/ltr]

C

  • [ltr]► 超複數‎ (1个分类, 12个页面)[/ltr]

D

  • [ltr]► 代数拓扑‎ (7个分类, 46个页面)[/ltr]
  • [ltr]► 代数逻辑‎ (2个分类, 20个页面)[/ltr]
  • [ltr]► 代數數論‎ (2个分类, 33个页面)[/ltr]

E

  • [ltr]► 二元運算‎ (3个分类, 61个页面)[/ltr]

F

G

  • [ltr]► 格理论‎ (1个分类, 16个页面)[/ltr]

H

J

M

  • [ltr]► 模論‎ (20个页面)[/ltr]

Q

  • [ltr]► 群论‎ (12个分类, 87个页面)[/ltr]

T

  • [ltr]► 同调代数‎ (5个分类, 29个页面)[/ltr]

U

  • [ltr]► 域論‎ (2个分类, 32个页面)[/ltr]

W



  • [ltr]► 代数结构‎ (2个分类, 21个页面)[/ltr]



  • [ltr]► 态射‎ (1个分类, 13个页面)[/ltr]



  • [ltr]► 标量‎ (4个页面)[/ltr]



[size][ltr]
分类“抽象代数”中的页面
以下82个页面属于本分类,共82个页面。
[/ltr][/size]
 

*

A

B

C

D

F

I

J

J 续

K

L

M

N

O

Q

S

T

U

X

Y

Z































线









[ltr]在泛代数代数结构是在一种或多种运算下封闭的一个或多个集合。如等。关于代数结构的的详细情况,参见各个链接。
一个代数结构包含集合及符合某些公理运算关系
集U上定义二元运算形成的系统称为代数系统,如果对于任意a,b∈U,恒有(a·b)∈U。二元运算可推广至多元运算F,则相应的封闭性要求则改为:对于任意a,b,c,d,……∈U,恒有F(a,b,c,d,……)∈U。有的书上对封闭性未作要求,并称之为广群。运算f是一个从A×B→C的映射,若A=B=C,则称运算f是封闭的。[/ltr]





Quantum Field Theory II - 页 2 25px-E-to-the-i-pi.svg  这是与数学相关的小作品。你可以通过编辑或修订扩充其内容。

分类:环论





[ltr]在抽象代数中,研究环的分支为环论。[/ltr]


[ltr]
子分类
本分类有以下3个子分类,共有3个子分类。
J[/ltr]



[ltr]
S[/ltr]



[ltr]
[/ltr]


  • [ltr]► 理想‎ (10个页面)[/ltr]


[ltr]
分类“環論”中的页面
以下48个页面属于本分类,共48个页面。[/ltr]

*

A

B

D

F

H

J

L

N

O

Q

S

T

U

Z





代 续





























一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:06

[编辑]




关于群的其它意思,请参看“群 (消歧义)”。

本文阐述基本概念。高阶主题请参见群论

Quantum Field Theory II - 页 2 200px-Rubik%27s_cube.svg

Quantum Field Theory II - 页 2 Magnify-clip
魔方的所有可能重新排列形成一个群,叫做魔方群







群论
Quantum Field Theory II - 页 2 160px-Rubik%27s_cube.svg

[th]
[显示]
基本概念[/th][th]
[显示]
离散群[/th][th]
[显示]
连续群[/th][th]
[显示]
无限维群[/th]

[ltr]
数学中,是一种代数结构,由一个集合以及一个二元运算所组成。
一个群必须满足一些被称为“群公理”的条件,也就是封闭性结合律单位元逆元。很多熟知的数学结构比如数系统都遵从这些公理,例如整数配备上加法运算就形成一个群。如果将群公理的公式从具体的群和其运算中抽象出来,就使得人们可以用灵活的方式来处理起源于抽象代数或其他许多数学分支的实体,而同时保留对象的本质结构性质。
群在数学内外各个领域中是无处不在的,这使得它们成为当代数学的组成的中心原理。[1][2]
群与对称概念共有基础根源。对称群几何物体的如此描述物体的对称特征:它是保持物体不变的变换的集合。这种对称群,特别是连续李群,在很多学术学科中扮演重要角色。例如,矩阵群可以用来理解在狭义相对论底层的基本物理定律和在分子化学中的对称现象。
群的概念引发自多项式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代开创。在得到来自其他领域如数论几何学的贡献之后,群概念在1870年左右形成并牢固建立。现代群论是非常活跃的数学学科,它以自己的方式研究群。a[›]为了探索群,数学家发明了各种概念来把群分解成更小的、更好理解的部分,比如子群商群单群。除了它们的抽象性质,群理论家还从理论计算两种角度来研究具体表示群的各种方式(群的表示)。对有限群已经发展出了特别丰富的理论,这在1983年完成的有限简单群分类中达到顶峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。[/ltr]

[ltr]阶录
  [隐藏[/ltr]




[ltr]

定义与解说[编辑]
第一个例子:整数[编辑]
最常见的群之一是整数Quantum Field Theory II - 页 2 0b100eeff3848a15dbb46291e7fe52ad,它由以下数组成:
..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...[3]
下列整数加法的性质,可以作为抽象的群公理的模型。[/ltr]


  1. 对于任何两个整数ab,它们的a + b也是整数。换句话说,在任何时候,把两个整数相加都能得出整数的结果。这个性质叫做在加法下封闭
  2. 对于任何整数abc,(a + b) + c = a +(b + c)。用话语来表达,先把a加到b,然后把它们的和加到c,所得到的结果与把a加到bc的和是相等的。这个性质叫做结合律
  3. 如果a是任何整数,那么0 + a = a + 0 = a叫做加法的单位元,因为把它加到任何整数都得到相同的整数。
  4. 对于任何整数a,存在另一个整数b使得a + b = b + a = 0。整数b叫做整数a逆元,记为−a


[ltr]
定义[编辑]
整数和运算"+"一起,形成了一个数学对象,它属于一个广泛的类,这类对象具有相似的结构性质。为了适当地理解这些结构,而不用个别地处理所有具体情况,发展出了下列抽象定义来涵盖上述和很多其他例子。
群是一个集合G,连同一个运算"·",它结合任何两个元素ab而形成另一个元素,记为a·b。符号"·"是对具体给出的运算,比如上面加法的一般的占位符。要具备成为群的资格,这个集合和运算(G,·)必须满足叫做群公理的四个要求:[4][/ltr]






1.封闭性。对于所有Gab,运算a·b的结果也在G中。b[›]
2.结合性。对于所有G中的abc,等式 (a·bc = a· (b·c)成立。
3.单位元。存在G中的一个元素e,使得对于所有G中的元素a,等式e·a = a·e = a成立。
4.反元素。对于每个G中的a,存在G中的一个元素b使得a·b = b·a = e,这里的e是单位元。
[ltr]

进行群运算的次序是重要的。换句话说,把元素a与元素b结合,所得到的结果不一定与把元素b与元素a结合相同;等式
a·b = b·a
不一定恒成立。这个等式在整数于加法下的群中总是成立,因为对于任何两个整数都有a + b = b + a(加法的交换律)。但是在下面的对称群中不总是成立。使等式a·b = b·a总是成立的群叫做阿贝尔群(以尼尔斯·阿贝尔命名)。因此,整数加法群是阿贝尔群,但下面的对称群不是。
第二个例子:对称群[编辑]
正方形的对称操作(比如旋转反射)形成了一个群,叫做二面体群并记为D4[5]二面体群中有下列8个对称:[/ltr]




Quantum Field Theory II - 页 2 140px-Group_D8_id.svg
id (保持原样)
Quantum Field Theory II - 页 2 140px-Group_D8_90.svg
r1 (向右旋转90°)
Quantum Field Theory II - 页 2 140px-Group_D8_180.svg
r2 (向右旋转180°)
Quantum Field Theory II - 页 2 140px-Group_D8_270.svg
r3(向右旋转270°)
Quantum Field Theory II - 页 2 140px-Group_D8_fv.svg
fv (垂直翻转)
Quantum Field Theory II - 页 2 140px-Group_D8_fh.svg
fh (水平翻转)
Quantum Field Theory II - 页 2 140px-Group_D8_f13.svg
fd (对角翻转)
Quantum Field Theory II - 页 2 140px-Group_D8_f24.svg
fc(反对角翻转)
正方形的对称群(D4)的元素。对顶点进行着色和编号只是把这些运算形象化。

  • 恒等运算保持所有东西不变,记为id;
  • 把正方形向右(顺时针)旋转90°、180°和270°,分别记为r1、r2和r3
  • 关于垂直和水平中线的反射记为fv和fh,关于两个对角线的反射记为fd和fc


[ltr]


任何两个对称ab都可以复合,即进行一个之后再进行另一个。先进行a然后进行b在符号上“从右到左”写为
b·a(“进行对称操作a之后再进行对称操作b”。从右到左的记号来源于函数复合)。
右面的群表列出了这种复合的所有可能结果。例如,右旋270°(r3)然后水平翻转(fh),等于进行一个沿对角线的反射(fd),如群表中蓝色突出的单元格所示。使用上述符号可以记为:
fh·r3 = fd[/ltr]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:12

D4的群表

















[th]·[/th][th]id[/th][th]r1[/th][th]r2[/th][th]r3[/th][th]fv[/th][th]fh[/th][th]fd[/th][th]fc[/th][th]id[/th][th]r1[/th][th]r2[/th][th]r3[/th][th]fv[/th][th]fh[/th][th]fd[/th][th]fc[/th]
idr1r2r3fvfhfdfc
r1r2r3idfcfdfvfh
r2r3idr1fhfvfcfd
r3idr1r2fdfcfhfv
fvfdfhfcidr2r1r3
fhfcfvfdr2idr3r1
fdfhfcfvr3r1idr2
fcfvfdfhr1r3r2id
元素id、r1、r2和r3形成一个子群,用红色突出。这个子群的左和右陪集分别用绿色和黄色突出。

给定这个对称的集合和描述的运算,群公理可以理解如下:


  • 闭合公理要求任何两个对称ab的复合b·a仍是对称。另一个群运算的例子是

r3·fh = fc
就是说在水平翻转后右旋270°等于沿反对角线翻转(fc)。确实,两个对称的所有其他组合仍得出一个对称,这可以使用群表来检查。


  • 结合律的限制处理多于两个对称的复合:给定D4的三个元素abc,有两种方式计算“a接着b接着c”。

(a·b)·c = a· (b·c)
的要求,意味着三个元素的复合与先进行哪个运算是无关的。 例如,(fd·fv)·r2 = fd· (fv·r2)可以使用右侧的群表来检查



(fd·fv)·r2 = r3·r2 = r1它等于
fd· (fv·r2) = fd·fh = r1

  • 单位元是保持所有东西不变的对称id:对于任何对称a,进行a然后进行id(或进行id然后进行a)等于a,用符号表示为

id·a = aa·id = a

  • 逆元素撤销某个其他元素的变换。所有对称都是可以撤销的:恒等id,翻转fh、fv、fd、fc和180°旋转r2这些变换都是自身的逆元,因为把它们进行两次就把正方形变回了最初的样子。旋转r3和r1相互是逆元,因为按一个方向旋转再按另一个方向旋转相同角度保持正方形不变。用符号表示为

fh·fh = idr3·r1 = r1·r3 = id
与上述的整数群不同的是,在整数群中运算次序是无关紧要的,而在D4中则是重要的:fh·r1 = fc然而r1·fh = fd。换句话说,D4不是阿贝尔群,这使得这个群的结构比上面介绍的整数群要更加复杂。

历史[编辑]

主条目:群论的历史

抽象群的现代概念是从多个数学领域发展出来的。[6][7][8]群论的最初动机是为了求解高于4次的多项式方程。十九世纪法国数学家埃瓦里斯特·伽罗瓦,扩展了保罗·鲁菲尼约瑟夫·拉格朗日先前的工作,依据特定多项式方程的(解)的对称群给出了对它的可解性的判别准则。这个伽罗瓦群的元素对应于根的特定置换。伽罗瓦的想法最初被同代人所拒绝,只在死后才出版。[9][10]更一般的置换群奥古斯丁·路易·柯西专门研究。阿瑟·凯莱的《On the theory of groups, as depending on the symbolic equation θn = 1》(1854年)给出有限群的第一个抽象定义。[11]

几何是系统性的使用群,特别是对称群的第二个领域。这类群是菲利克斯·克莱因1872年的爱尔兰根纲领的一部分。[12]在新型的几何如双曲几何射影几何形成之后,克莱因利用群论以更连贯的方式来组织它们。索菲斯·李进一步发展了这些想法,在1884年创立了李群的研究。[13]

对群论有贡献的第三个领域是数论。一些阿贝尔群结构在卡尔·弗里德里希·高斯的数论著作《算术研究》(1798年)中被隐含地用到,并被利奥波德·克罗内克更明显地用到。[14] 1847年,恩斯特·库默尔发展了描述用素数因子分解理想类群,使证明费马大定理的早期尝试达到了高潮。[15]

把上述各种来源融合成一个群的统一理论是从卡米尔·若尔当的《Traité des substitutions et des équations algébriques》(1870年)开始的。[16] 瓦尔特·冯·迪克(1882年)给出了第一个抽象群的现代定义的陈述。[17]在二十世纪,群在费迪南德·格奥尔格·弗罗贝尼乌斯威廉·伯恩赛德的开拓性著作中获得了广泛的认识,他们研究有限群的表示理论,还有理查德·布劳尔模表示论Issai Schur的论文。[18]赫尔曼·韦伊埃利·嘉当和很多其他人推进了李群和更一般的局部紧群的理论。[19]它的代数对应者——代数群的理论,由克劳德·舍瓦莱(从1930年代晚期开始)和后来阿尔曼德·波莱尔雅克·蒂茨的重要著作奠基。[20]

芝加哥大学于1960-61年举办的“群论年”活动促使群论家们以丹尼尔·格伦斯坦约翰·格里格斯·汤普森华特尔·费特为基础展开合作。在大量其他数学家的帮助下,他们完成了有限单群的分类。这项工程,不论是从证明长度来说还是从参与人数来说,其浩大程度超越了之前一切的数学成果。简化此证明的研究还在进行中。[21]群论在当下仍是一个活跃的数学分支,并仍在对其他分支产生重大影响。a[›]

群公理的简单结论[编辑]

主条目:初等群论

可以从群公理直接获得的关于所有群的基本事实,通常包含在初等群论中。[22]例如,重复应用结合律公理,可以证明以下等式
a·b·c = (a·b)·c = a·(b·c)
可以推广到多于三个因子。因为这意味着括号可以插入到一序列的项的任何地方,所以通常省略括号。[23]

公理可以弱化为只宣称左单位元左逆元的存在性。二者可以被证明实际上是双侧的,所以得出的定义与上面给出的等价。[24]

单位元和逆元的唯一性[编辑]

群公理的两个重要结果是单位元和逆元的唯一性。在群中只能有一个单位元,而群中的每个元素都正好有一个逆元素。[25]

要证明a的逆元素的唯一性,假设a有两个逆元,记为lr。则









l=l·e    由于e是单位元
=l· (a·r)    因为ra的逆元,所以e = a·r
=(l·ar    根据结合律,它允许重新安排括号
=e·r    由于la的逆元,就是说l·a = e
=r    由于e是单位元
因此lr被一系列等式连接了起来,所以它们是相等的。换句话说a只有一个逆元。

除法[编辑]

在群中,可以进行除法:给定群G的元素abG中存在方程x·a = b的唯一解x[25]实际上,把方程右乘以a−1给出解x = x·a·a−1 = b·a−1。类似地,G中存在方程a·y = b的唯一解y,也就是y = a−1·b。一般地说,xy不一定相等。

这一结果的一个推论是“乘以某个群中的元素g”是一个双射。特别地,如果g是群G的一个元素,则有G到自身的双射,(称为g引起的左平移)它将Quantum Field Theory II - 页 2 5049991a5b2bbf9d3833fd6ec82c7a38映射为Quantum Field Theory II - 页 2 77b99c3a115253fbab173bdb3fe90eb0。类似地,g引起的右平移是一个G到自身的双射,它将Quantum Field Theory II - 页 2 5049991a5b2bbf9d3833fd6ec82c7a38映射为Quantum Field Theory II - 页 2 D2d040092b26f1c3df9d62609e9021ce。如果G是阿贝尔群,由同一个元素引起的左平移和右平移是相同的。

基本概念[编辑]
下列章节使用了数学符号如X = { x, y, z }来表示集合X包含元素x、y和z,或Quantum Field Theory II - 页 2 735b05e6097f98da56f2ca14b8005d36来表示x是X的一个元素。记法Quantum Field Theory II - 页 2 52d50404f827bbeee59ac8a21a1378b5意味着f是对X的所有元素指定Y的一个元素的函数。
更多资料:群论术语

要超越上述纯粹符号操作水平去理解群,必须采用更加结构性的概念。c[›]有一个概念性原理位于所有下列概念的底层:要发挥群提供的结构(而无结构的集合就没有)的优势,与群有关的构造必须与群运算兼容。下列概念中以各种方式表现了这种兼容性。例如,群可以通过叫做群同态的函数相互关联。根据上述这个原理,要求它们以精确的意义照顾到群结构。群的结构还可以通过把它们分解成子群和商群来理解。“保持结构”的原理是在数学中反复出现的一个主题,它是靠范畴来工作的一个实例,在这里的情况下靠群范畴[26]

群同态[编辑]

主条目:群同态

群同态g[›]是保持群结构的函数。两个群之间的函数aG → H是同态,如果等式
a(g·k) = a(g)·a(k)
对于所有G中的元素gk都成立,就是说在进行映射a之后还是之前进行群运算所得到的结果是一样的。这个要求保证了a(eG) = eH,以及对于G中的所有g,都有a(g)−1 = a(g−1)。因此群同态保持了群公理提供的G的所有结构。[27]

两个群GH被称为同构的,如果存在群同态aG → HbH → G,使得先后(以两种可能的次序中每个次序)应用两个函数分别等于GH恒等函数。就是说,对于任何G中的gHh,有a(b(h)) = hb(a(g)) = g。从抽象的观点来看,同构的群携带了相同的信息。例如,证明对于G的某个元素gg·g = eG等价于证明a(ga(g) = eH,因为应用a于第一个等式得到第二个,而应用b于第二个得到第一个。

子群[编辑]

主条目:子群

非正式的说,子群是包含在更大的群G内的一个群H[28]具体的说,G的单位元包含在H中,并且只要h1h2H中,则h1· h2h1−1也在其中,所以H的元素对于限制于HG上的群运算确实形成了一个群。

在上面例子中,单位元和旋转构成了一个子群R = {id, r1, r2, r3},在上面的群表中突出为红色:任何两个复合的旋转仍是一个旋转,并且旋转可以被相反方向上的旋转(它的逆元)所抵消。子群检验法是群G的子集H是子群的充分必要条件:对于所有元素gh ∈ H,只需检查g−1h ∈ H。了解子群族对于作为一个整体来理解群是重要的。d[›]

给定群G的任何子集S,由S所生成的子群是由S的元素和它们的逆元的乘积组成。它是包含SG的最小子群。[29]在上面介绍例子中,r2和fv所生成的子群由这两个元素本身、单位元id和fh = fv·r2构成。这还是个群,因为结合这四个元素或它们的逆元(在这个特殊情况下,是这些相同的元素)中任何两个仍得到这个子群中的元素。
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:14

陪集[编辑]

主条目:陪集

在很多情况下,需要认为两个群元素是等同的,如果它们只差一个给定子群中的元素。例如,在上述D4中,一旦进行了翻转,只进行旋转运算(不再进行翻转)正方形就永远不能回到r2的构型,就是说旋转运算对于是否已经进行了翻转的问题是无关紧要的。陪集可用来把这种现象形式化:子群H定义了左陪集和右陪集,它们可以认为是把H平移了一个任意群元素g。用符号表示,H的包含g的左和右陪集分别是
gH = {gh, Quantum Field Theory II - 页 2 3675c32b8a780f2e55bc4c046f1acfd3}和Hg = {hg, Quantum Field Theory II - 页 2 3675c32b8a780f2e55bc4c046f1acfd3}。[30]
任何子群H的陪集形成了G的一个划分;就是说所有左陪集的并集G相等,而且两个陪集要么相等,要么有交集[31]第一种情况g1H = g2H出现当且仅当g1−1g2 ∈ H,就是说如果这两个元素差异了H的一个元素。类似的考虑也适用于H的右陪集。H的左和右陪集可以相等也可以不相等。如果它们相等,就是说对于所有G中的ggH = Hg,则H被称为正规子群

在前面介绍的对称群D4中,由旋转构成的子群R的左陪集gR要么等于R,如果gR自身的一个元素;要么等于U = fvR = {fv, fd, fh, fc}(用绿色突出)。子群R还是正规的,因为fvR = U = Rfv且对于任何fv以外的元素也是类似的。

商群[编辑]

主条目:商群

有时在由陪集形成的集合上可以赋予一个满足群公理的运算而使之成为商群因子群。这仅在子群是正规的时候才可行。给定任何正规子群N,商群定义为
G / N = {gN, Quantum Field Theory II - 页 2 72c2de6dada513c3d289a176500f29c8},“G模N”[32]
这个集合从最初的群G继承了一个群运算(有时叫做陪集乘法或陪集加法):对于所有G中的gh,(gN)· (hN) =(ghN。这个定义是由关联任何元素g到它的陪集gN的映射G → G / N是群同态的想法(自身是上面提出的一般结构性考虑的一个实例)所激发的,或者是叫做泛性质的一般抽象考虑。陪集eN = N充当了这个群的单位元,在商群中Ng的逆元是(gN)−1 =(g−1Ne[›]

[th]·[/th][th]R[/th][th]U[/th][th]R[/th][th]U[/th]
RU
UR
商群D4 / R的群表。

商群D4 / R的元素是代表单位元的R自身和U = fvR。商群上的群运算如右侧所示。例如,U·U = fvR·fvR =(fv·fvR = R。子群R = {id, r1, r2, r3}和对应的商群都是阿贝尔群,而D4不是阿贝尔群。通过较小的群构造较大的群,例如从子群R和商群D4 / R构造D4,被抽象为叫做半直积的概念。

商群和子群一起形成了用它的展示描述所有群的一种方法:任何群都是这个群的生成元上的自由群模以“关系”子群得到的商群。例如,二面体群D4可以由两个元素rf生成(比如r = r1右旋,和f = fv垂直)或任何其他)翻转),这意味着正方形的所有对称都是这两个对称或它们的逆元的有限复合。与关系在一起
r 4 = f 2 = (rf)2 = 1,[33]
这个群就完全描述出来了。群的展示还可以被用来构造凯莱图,它是一种利用图形来辅助理解离散群的工具。

子群和商群以下列方式相互关联:G的子集H可以被看作单射H → G,就是说任何目标元素都有最多一个映射到它的元素。单射的对立是满射(所有目标的元素都被映射到了),比如规范映射G → G / Ny[›]通过这些同态理解子群和商群强调了这些定义中内在的结构性概念。一般的说,同态既不是单射也不是满射。群同态的第一同构定理研究这个现象。

共轭[编辑]

主条目:共轭类

如果同一个群中的两个元素pq 满足关系:p = x−1qx,其中x也是同一个群中的元素,则称元素pq 共轭。共轭关系是一个等价关系,即它满足三个性质:共轭是自反的、对称的和传递的。

在群中可以找到一个集合,这个集合中每一个元素都相互共轭,而在这个集合以外群的其他部分已经没有任何元素与他们具有共轭关系了。称这种集合为群中的一个共轭类。同一个群的两个类之间一定没有共同的元素。群中一个元素一定属于且仅属于一个类。如果群中没有元素与该元素共轭,则该元素自成一类。

例子和应用[编辑]

主条目:群的例子群论应用

Quantum Field Theory II - 页 2 180px-Wallpaper_group-cm-6
周期性壁纸引发壁纸群
[size]
Quantum Field Theory II - 页 2 180px-Fundamental_group.svg
[/size]
平面减去一个(粗体)点的基本群由在这个区域内的环路构成。


群的例子和应用大量存在。起点是上面介绍过的整数的群Z带有加法作为群运算。如果把加法替代为乘法,就得到了乘法群。这些群是抽象代数中重要概念的前身。

群应用于很多数学领域中。数学对象的性质经常是通过将群关联与数学对象关联,并研究相应的群的性质来研究的。例如,儒勒·昂利·庞加莱通过引入基本群创立了现在所谓的代数拓扑[34]通过这种连接方式,拓扑性质比如临近连续转换成了群的性质。i[›]例如,右侧的图像描绘了平面减去一个点的基本群的元素。这个群的元素给出为在这个区域内的环路。蓝色环路被认为是零同伦(因此是无关紧要的),因为它可以收缩为一个点。圆孔的存在防止了橙色环路被收缩。橙色环路(或任何环绕这个圆孔一次的其他环路)所生成的,去掉了一个点的平面的基本群是无限循环群。基本群以这种方式探测到了这个圆孔。

在更新近的应用中,影响已经被倒转过来,由群论背景来激发几何结构了。j[›]在类似的脉络下,几何群论采用了几何概念,比如在双曲群的研究中。[35]其他一些大量应用群论的数学分支包括代数几何数论。例如,典型群Picard群在代数几何上有重要应用;参见[36]

除了上述理论应用之外,还存在很多群的实践应用。密码学依赖于抽象群论方式和从计算群论中特别是实现于有限群上的时候所得到的算法知识的结合。[37]群论的应用不限于数学;科学如物理化学计算机科学都受益于这个概念。

[编辑]

很多数系统,比如整数和有理数享有自然给予的群结构。在某些情况下比如对于有理数,加法和乘法运算二者都引发群结构。这种系统是叫做的更一般的代数结构的前身。

整数[编辑]

整数Z在加法下的群记为(Z, +),它在上面已经描述了。整数带有用乘法替代加法的运算,(Z, ·)不形成群。闭合、结合律和单位元公理满足,但逆元不存在:例如,a = 2是整数,但方程a·b = 1的唯一解在这种情况下是b = 1/2,它是有理数而非整数。因此不是所有Z的元素都有(乘法)逆元。k[›]

有理数[编辑]

对乘法逆元存在的要求建议了考虑分式
Quantum Field Theory II - 页 2 Bd4e4fc402cfad741450ee345fef4a60
整数的分式(要求b非零)叫做有理数l[›]所有这种分数的集合通常记为Q。对于有理数带有乘法(Q,·),成为群仍有一个小障碍:因为有理数0没有乘法逆元(就是说没有x使得x·0 = 1),(Q, ·)仍然不是群。

但是,所有非零有理数的集合Q\{0} = {q ∈ Qq ≠ 0}形成一个在乘法下的阿贝尔群,记为(Q\{0},·)。m[›]结合律和单位元公理从整数的性质中得出。闭合要求在去掉零之后仍成立,因为任何两个非零有理数的乘积永远不是零。最后,a/b的逆元是b/a,所以逆元公理也满足。

有理数(包括0)在加法下也形成群。同时带有加法和乘法运算产生更复杂的结构叫做—如果同时除法总是可能的话(如在Q中)就是域,它在抽象代数中占据中心位置。群论理论因此位于这些实体的理论的底层部分。n[›]

非零整数模以素数[编辑]

对于任何素数p模算术提供了整数模以p的乘法群[38]群的元素是不能被p整除的整数p同余类,就是说两个数被认为是等价的如果它们的p整除。例如,如果p = 5,则精确地有四个群元素1, 2, 3, 4:排除了5的倍数而6和−4都等价于1。群运算给出为乘法。因此4·4 = 1,因为通常意义下的乘积16等价于1,而5整除16 − 1 = 15。以上事实记为
16 ≡ 1(mod 5)。
p的首要作用是确保了两个都不被p整除的整数的乘积也不被p整除,因此指示的同余类的集合在乘法下闭合。o[›]单位元如平常的乘法群一样是1,而结合律可以从整数的相应性质得出。最后,逆元公理要求给定不整除于p的整数a,存在一个整数b使得
a · b ≡ 1(mod p),就是说p整除a·b − 1的差。
逆元b可以使用贝祖等式最大公约数gcd(ap)等于1的事实找到。[39]在上述p = 5的情况下,4的逆元是4,3的逆元是2,因为3·2 = 6 ≡ 1 (mod 5)。所有的群公理都满足。实际上,这个例子类似于上述(Q\{0},·),因为它是在有限域Fp中非零元素的乘法群,记为Fp×[40]这些群对于公开密钥加密是至关重要的。p[›]

循环群[编辑]

主条目:循环群阿贝尔群

Quantum Field Theory II - 页 2 170px-Cyclic_group.svg
Quantum Field Theory II - 页 2 Magnify-clip
单位一的六次复数根形成一个循环群。z是本原元而z2不是,因为z的奇数幂不是z2的幂。


循环群是其所有元素都是特定元素a的群(在群运算被写为加法的时候使用术语倍数)。[41]在乘法符号下,群的元素是:
..., a−3, a−2, a−1, a0 = e, a, a2, a3, ...,
这里的a2意味着a·a,而a−3表示a−1·a−1·a−1=(a·a·a)−1等等。h[›]这个元素a叫做这个群的生成元或本原元

这类群的典型例子是单位一的n次复数根,由满足zn = 1的复数z给出,其运算为乘法。[42]任何有n个元素的循环群同构于这个群。使用某些域理论,群Fp×可以被证明为是循环群:对于p = 5, 3是生成元因为31 = 3, 32 = 9 ≡ 4, 33 ≡ 2,而34 ≡ 1。无限循环群同构于(Z, +),它是前面介绍的整数在加法下的群。[43]因为这两个原型都是阿贝尔群,所以任何循环群都是。

阿贝尔群包括有限生成阿贝尔群的基本定理的研究是非常成熟的;对这个事态的反映是很多有关群论的概念,比如中心交换子,描述了一个给定群不是阿贝尔群的程度。[44]

对称群[编辑]

主条目:空间对称群

参见:分子对称性空间群对称性 (物理学)

对称群是由给定数学对象的对称组成的群,对称源于它们的几何本性(比如前面介绍的正方形的对称群)或源于代数本性(比如多项式方程和它们的解)。[45]概念上说,群论可以被认为是对称性的研究。t[›] 数学中的对称性极大的简化了几何分析对象的研究。群被称为作用于另一个数学对象X上,如果所有群元素进行某个在X上的运算兼容于群定律。在下面最右侧例子中,7阶的(2,3,7)三角群的一个元素通过置换突出的弯曲的三角形作用在镶嵌上(其他的元素也是)。通过群作用,群模式被连接到了所作用到的对象的结构上。

Quantum Field Theory II - 页 2 200px-Sixteenth_stellation_of_icosahedron
Quantum Field Theory II - 页 2 Magnify-clip
旋转和翻转形成一个大二十面体的对称群。


在化学领域中,比如晶体学空间群点群描述分子对称性和晶体对称性。这些对称性位于这些系统的化学和物理表现的底层,而群论使简化对这些性质的量子力学分析成为可能。[46]例如,群论被用来证实在特定量子级别间不出现光学跃迁简单的因为涉及到了状态的对称性。

群不只对评定在分子中蕴含的对称性有用,而且令人惊奇的它们还可以预测出分子的对称性有时候可以改变。姜-泰勒效应是高对称的分子的变形,此时,在通过分子的对称运算相互关联的一组可能基态中,该分子将采纳一个特定的低对称的基态。[47][48]

同样的,群论还可以帮助预测在物质经历相变的时候出现的物理性质的变更,比如晶体形式从立方体变为四面体。一个例子是铁电物质,这里从顺电到铁电状态的变更出现在居里温度时,与从高对称顺电状态到低对称铁电状态的变更有关,并伴随着所谓的软声子模式,它是在变化时转到零频率的振动晶格模式。[49]

这种自发对称性破缺在基本粒子物理中找到了进一步应用,这里它的出现与戈德斯通玻色子的出现有关。

Quantum Field Theory II - 页 2 125px-C60aQuantum Field Theory II - 页 2 125px-Ammonia-3D-balls-AQuantum Field Theory II - 页 2 125px-Cubane-3D-ballsQuantum Field Theory II - 页 2 125px-Hexaaquacopper%28II%29-3D-ballsQuantum Field Theory II - 页 2 125px-Uniform_tiling_73-t2_colored
富勒烯展现了二十面体对称NH3。它的对称群是6阶的,用120°旋转和反射生成的。立方烷C8H8刻画了八面体对称六水合铜(II)配合物[Cu(OH2)6]2+。相较于完美的对称形状,分子垂直膨胀大约22%(姜-泰勒效应)。(2,3,7)三角群是双曲群,它作用在这个双曲面的镶嵌上。

有限对称群比如马蒂厄群被用于编码理论中,它又用于传输数据的纠错CD播放器中。[50]另一个应用是微分伽罗瓦理论,它刻画有已知形式的不定积分的函数,给出何时特定微分方程的解有良好表现的群论判定标准。u[›]在群作用下保持稳定的几何性质在几何不变量理论中研究。[51]
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:15

一般线性群和表示理论[编辑]

主条目:一般线性群群表示论

Quantum Field Theory II - 页 2 250px-Matrix_multiplication.svg
Quantum Field Theory II - 页 2 Magnify-clip
两个向量(左侧展示),和它们乘以矩阵之后(中间和右侧展示)。中间的表示了顺时针旋转90°,而右侧的再按因子2伸缩了x坐标。


矩阵群矩阵加上矩阵乘法一起构成。一般线性群GL(nR)由所有可逆nn的带有实数元素的矩阵构成。[52]它的子群被称为矩阵群或线性群。上面提及的二面体群例子可以被看作(非常小的)矩阵群。另一个重要矩阵群是特殊正交群SO(n)。它描述了n维的所有可能旋转。通过欧拉角旋转矩阵被用于计算机图形学中。[53]

表示理论是对群概念的应用并且对深入理解群是很重要的。[54][55]它通过群作用于其他空间来研究群。一类广泛的群表示是线性表示,就是说群作用在线性空间中,比如三维欧几里得空间R3Gn-实向量空间上的表示简单的是从群到一般线性群的群同态
ρ: G → GL(n, R)。
以这种方式,抽象给出的群运算被转换成用明确的计算可触及到的矩阵乘法。w[›]

给定一个群作用,这给出了研究所作用的对象的进一步方法。x[›]在另一方面,它还产生了关于群的信息。群表示是在有限群、李群、代数群拓扑群特别是(局部)紧群理论中的起组织作用的原则。[54][56]

伽罗瓦群[编辑]

主条目:伽罗瓦群

伽罗瓦群是通过对求解多项式方程的过程中涉及到的对称性的研究而被发展起来的。[57][58]例如,二次方程ax2 + bx + c = 0的解给出为
Quantum Field Theory II - 页 2 8c58ae2d322a33f3036800d96db0e91a
对换表达式中的"+"和"−",也就是置换方程的两个解可以被看作(非常简单的)群运算。类似的公式对于三次方程四次方程也有,但是对于五次方程和更高次的方程就不普遍性的存在。[59]与多项式相关联的伽罗瓦群的抽象性质(特别是它们的可解性)给出了那些多项式的所有解都可用根式表达的判定标准,就是说这些解可以类似上面公式那样只使用加法、乘法和方根来表达。[60]

这个问题可以使用域理论来处理:考虑一个多项式的分裂域就把问题转移到了域理论的领域中了。现代伽罗瓦理论把上述类型的伽罗瓦群推广到了域扩张,并通过伽罗瓦理论基本定理建立了在域和群之间的严格关联,再次凸显了群在数学中无所不在。

有限群[编辑]

主条目:有限群

一个群被称为有限群,如果它有有限个元素。元素的数阶叫做群G[61]一类重要的有限群是n次对称群SN,它是N个字母的置换的群。例如,在3个字母上的n次对称群S3是由三个字母ABC的所有可能置换构成的群,就是说它包含元素ABCACB, ...,直到CBA,总共有6(或3的阶乘)个元素。这类群是基础性的,因为任何有限群都可以表达为n次对称群SN在适合的整数N下的子群(凯莱定理)。相似于上述正方形的对称的群,S3还可以解释为等边三角形的对称的群。

在群G中的一个元素a的阶是最小的使得an = e的正整数n,这里的 an表示Quantum Field Theory II - 页 2 377cdf8ee6485886e2fb2202f67004cf,就是应用运算·于an个复本上。(如果·代表乘法则an对应于an次幂)。在无限群中,这个n可能不存在,在这种情况下a的阶被称为无限的。一个元素的阶等于这个元素生成的循环子群的阶。

更复杂的计数技术例如计数陪集,产生关于有限群的更精确陈述:拉格朗日定理声称有限群G的任何有限子群H的阶整除G的阶。西罗定理证明了它的部分逆命题。

上面讨论的二面体群是8阶有限群。r1的阶为4,这是它生成的子群R(见上)的阶。反射元素fv等的阶是2。如拉格朗日定理所述这两个阶都整除8。上面的群Fp×有阶p − 1。

有限单群分类[编辑]

主条目:有限单群分类

数学家们常常为寻求一种数学对象的完备分类(或列表)而努力。在有限群的领域内,这个目标迅速引出了一系列困难而意义深远的数学问题。根据拉格朗日定理,p阶有限群(p为素数)必定是循环(阿贝尔)群Zpp2阶群也被证明是阿贝尔群。但这一命题并不能推广到p3阶群,如上面的非阿贝尔群——8阶二面体群D4所示,其中8 = 23[62]可以利用计算机代数系统来给较小的群列表,但没有对一切有限群的分类。q[›]一个中间步骤是有限单群分类。r[›]如果一个非平凡群仅有的正规子群是平凡群和它自身,那么这个群叫做一个单群或简单群。s[›]若尔当-赫尔德定理说明单群可以作为建构有限群的“砖块”。[63]有限单群列表是当代群论的一个主要成就。1998年的菲尔兹奖得主理查·伯切德斯成功地证明了所谓怪兽-胡言乱语猜想。该猜想指出了最大有限简单散在群——“怪兽群”与一种来自经典复分析弦理论(一种被认为统一了对许多物理学现象的描述的理论)的对象模函数之间的惊人而深刻的联系。[64]

带有额外结构的群[编辑]

很多群同时是群和其他数学结构的例子。用范畴论的语言来说,它们是在范畴中的群对象,这意味着它们是带着模仿群公理的(叫做态射的)变换的对象(就是说其他数学结构的例子)。例如,所有群(如上面定义的)也是一个集合,所以群是在集合范畴中的群对象。

拓扑群[编辑]

主条目:拓扑群

Quantum Field Theory II - 页 2 220px-Circle_as_Lie_group2.svg
Quantum Field Theory II - 页 2 Magnify-clip
复平面中的单位圆在复数乘法下是李群,所以是拓扑群。它是拓扑的因为复数乘法和除法是连续的。它是流形并因此是李群,因为所有小段比如在图中的红色圆弧,看起来像(显示在底下的)实数线的一部分。


某些拓扑空间可以配备上群结构。为了让群公理与拓扑交织良好,群运算必须是连续函数,就是说如果gh只变化很小,那么g·h,和g−1必须变化不大。这种群叫做拓扑群,并且它们是在拓扑空间范畴内的群对象。[65]最基本的例子是实数R在加法之下(R\{0},·),任何其他拓扑域比如复数p进数也是类似。所有这些群都是局部紧拓扑群,所以它们有哈尔测度并可以通过调和分析来研究。前者提供了不变积分的抽象形式化。以实数情况为例,不变性意味着有:
Quantum Field Theory II - 页 2 B15c7b953333b8d4de47384abc665e93
对于任何常数c成立。在这些域上的矩阵群也属于这种结构下,赋值向量环赋值向量代数群也是如此,它们对数论是基础性的。[66]无限域扩张的伽罗瓦群比如绝对伽罗瓦群也可以配备上拓扑,叫做Krull拓扑,它又是推广上面概述的域和群的连接到无限域扩张的中心概念。[67]适应代数几何需要的这个想法的高级推广是étale基本群[68]

李群[编辑]

主条目:李群 (数学)

李群(为纪念索菲斯·李而命名)是具有流形结构的群,就是说它们是局部上看起来像某个适当维度欧几里得空间的空间。[69]这里,作为额外结构的流形结构也必须是兼容的,就是说对应于乘法和求逆的映射必须是光滑的。



标准例子是上面介绍的一般线性群:它是所有Quantum Field Theory II - 页 2 607acaa73c762411b20745149a11e90b矩阵的空间的开子集,因为它由不等式
det (A) ≠ 0,
给出。这里的A指示Quantum Field Theory II - 页 2 607acaa73c762411b20745149a11e90b矩阵。[70]

李群在物理中是基础性的:诺特定理把连续对称与守恒定律关联起来。[71]空间时间旋转平移不变性是力学定律的基本对称。它们可以被用来构造简单的模型——比如在一种状况下实施轴对称常常会导致在解用来提供物理描述的方程上的重大简化。v[›]另一个例子是洛伦兹变换,它有关于两个相互运动的观察者的时间和速度的测量。它们可以用纯群论方式推演,通过把变换表达为闵可夫斯基时空的旋转对称。在忽略万有引力的情况下,后者充当了狭义相对论时空模型。[72]闵可夫斯基时空的完全对称群,就是说包括了平移,叫做庞加莱群。通过上述联系,它在狭义相对论中扮演了关键角色,并隐含地用于量子场论[73] 随位置变化的对称规范场论一起构成现代物理对相互作用的描述的中心。[74]

推广[编辑]

[th][/th][th]完全性[/th][th]结合律[/th][th]单位元[/th][th]除法[/th][th][/th][th]幺半群[/th][th]半群[/th][th]环群[/th][th]拟群[/th][th]原群[/th][th]广群[/th][th]范畴[/th]
类似群的结构

抽象代数中,通过放松定义群的某个公理可定义出更多的一般结构。[26][75][76]例如,如果省略所有元素都逆元的要求,结果的代数结构就叫做幺半群自然数N(包括0)在加法下形成了幺半群,还有非零整数在乘法下(Z\{0},·)也是。有一种一般方法用来向任何(阿贝尔的)幺半群正式的增加元素的逆元,非常类似于从(Z\{0},·)得出(Q\{0},·)的方式,这叫做格罗滕迪克群广群非常类似于群,除了复合a · b不必须在所有的ab上有定义之外。它们由更加复杂形式的对称的研究所引发,常见于拓扑分析结构比如基本广群中。表格给出一些推广群的结构。



参见[编辑]




注释[编辑]



^  a:  《数学评论》列出了3,224篇2005年写的关于群论和它的应用的研究论文。
^  b:  闭合公理已经由·是二元运算的条件所蕴含。因此有些作者省略这个公理。Lang 2002
^  c:  比如参见Lang (2002, 2005)和Herstein (1996, 1975)的书。
^  d:  但是一个群不由它的子群的格所决定。参见Suzuki 1951
^  e:  群运算的这么规范的扩展是泛性质的实例。
^  f:  例如,依据拉格朗日定理,如果G是有限的,则任何子群和任何商群的大小整除G的大小。
^  g:  词同态演化自希腊语ὁμός—相同和μορφή—结构。
^  h:  循环群的加法符号是t·at ∈ Z
^  i:  例子参见Seifert–van Kampen定理
^  j:  一个例子是群的群上同调,它等于它的分类空间单同调
^  k:  有乘法逆元的元素叫做可逆元,参见Lang 2002, §II.1, p. 84。
^  l:  通过增加分数的从整数到有理数的转变推广为分式域
^  m:  用任何F替代Q同样是真的。参见Lang 2005, §III.1, p. 86。
^  n:  例如,域的乘法群的有限子群必然是循环群。参见Lang 2002, Theorem IV.1.9。单纯代数概念是这个原理的另一个实例。
^  o:  陈述的性质是素数的一个可能定义。参见素元
^  p:  例如,Diffie-Hellman密钥交换协议使用离散对数
^  q:  阶不超过2000的群是已知的。这些群在同构意义下约有490亿个。参见Besche, Eick & O'Brien 2001.
^  r:  在单群和一般群分类之间的缺口在于扩张问题,一个很难一般性求解的问题。参见Aschbacher 2004, p. 737.
^  s:  等价地说,一个非平凡群是单群当且仅当它仅有的商群是平凡群和自身。参见Michler 2006, Carter 1989.
^  t:  更严格的说,所有群都是某个的对称群,参见Frucht 1939
^  u:  更精确地说,monodromy作用在要考虑的微分方程的解的向量空间上。参见Kuga 1993, pp. 105–113。
^  v:  例如参见史瓦西度规,这里的对称极大的减小了物理系统的复杂性。
^  w:  例如,这是有限简单群的分类的关键。参见Aschbacher 2004
^  x:  例如,群作用在单模上的效果的Schur引理。更加复杂的例子是绝对伽罗瓦群作用在étale上同调上。
^  y:  单射和满射分别对应于单同态满同态。在传给对偶范畴的时候它们是可互换的。


引文[编辑]


  1. ^ Herstein 1975, §2, p. 26
  2. ^ Hall 1967, §1.1, p. 1:“群的想法遍布在包括纯数学和应用数学二者的整个数学中。”
  3. ^ Lang 2005, App. 2, p. 360
  4. ^ Herstein 1975, §2.1, p. 27
  5. ^ Herstein 1975, §2.6, p. 54
  6. ^ Wussing 2007
  7. ^ Kleiner 1986
  8. ^ Smith 1906
  9. ^ Galois 1908
  10. ^ Kleiner 1986, p. 202
  11. ^ Cayley 1889
  12. ^ Wussing 2007, §III.2
  13. ^ Lie 1973
  14. ^ Kleiner 1986, p. 204
  15. ^ Wussing 2007, §I.3.4
  16. ^ Jordan 1870
  17. ^ von Dyck 1882
  18. ^ Curtis 2003
  19. ^ Mackey 1976.
  20. ^ Borel 2001
  21. ^Aschbacher 2004
  22. ^Ledermann 1953, §1.2, pp. 4–5
  23. ^Ledermann 1973, §I.1, p. 3
  24. ^ Lang 2002, §I.2, p. 7
  25. 25.0 25.1Lang 2005, §II.1, p. 17
  26. 26.0 26.1 Mac Lane 1998
  27. ^ Lang 2005, §II.3, p. 34
  28. ^ Lang 2005, §II.1, p. 19
  29. ^Ledermann 1973, §II.12, p. 39
  30. ^ Lang 2005, §II.4, p. 41
  31. ^ Lang 2002, §I.2, p. 12
  32. ^ Lang 2005, §II.4, p. 45
  33. ^ Lang 2002, §I.2, p. 9
  34. ^ Hatcher 2002, Chapter I, p. 30
  35. ^ Coornaert, Delzant & Papadopoulos 1990
  36. ^ Neukirch 1999,特别是§§I.12和I.13
  37. ^ Seress 1997
  38. ^ Lang 2005, Chapter VII
  39. ^ Rosen 2000, p. 54 (Theorem 2.1)
  40. ^ Lang 2005, §VIII.1, p. 292
  41. ^ Lang 2005, §II.1, p. 22
  42. ^ Lang 2005, §II.2, p. 26
  43. ^ Lang 2005, §II.1, p. 22 (example 11)
  44. ^ Lang 2002, §I.5, p. 26, 29
  45. ^ Weyl 1952
  46. ^ Conway, Delgado Friedrichs & Huson et al. 2001.另见Bishop 1993
  47. ^ Bersuker, Isaac, The Jahn-Teller Effect, Cambridge University Press. 2006:  2,ISBN 0521822122
  48. ^ Jahn & Teller 1937
  49. ^ Dove, Martin T, Structure and Dynamics: an atomic view of materials, Oxford University Press. 2003:  265,ISBN 0198506783
  50. ^ Welsh 1989
  51. ^ Mumford, Fogarty & Kirwan 1994
  52. ^ Lay 2003
  53. ^ Kuipers 1999
  54. 54.0 54.1 Fulton & Harris 1991
  55. ^ Serre 1977
  56. ^ Rudin 1990
  57. ^Robinson 1996, p. viii
  58. ^ Artin 1998
  59. ^ Lang 2002, Chapter VI (see in particular p. 273 for concrete examples)
  60. ^ Lang 2002, p. 292 (Theorem VI.7.2)
  61. ^ Kurzweil & Stellmacher 2004
  62. ^ Artin 1991, Theorem 6.1.14.另见Lang 2002, p. 77,其中包含类似结果。
  63. ^ Lang 2002, §I. 3, p. 22
  64. ^ Ronan 2007
  65. ^ Husain 1966
  66. ^ Neukirch 1999
  67. ^ Shatz 1972
  68. ^ Milne 1980
  69. ^ Warner 1983
  70. ^ Borel 1991
  71. ^ Goldstein 1980
  72. ^ Weinberg 1972
  73. ^ Naber 2003
  74. ^ Becchi 1997
  75. ^ Denecke & Wismath 2002
  76. ^ Romanowska & Smith 2002
一星
一星

帖子数 : 3787
注册日期 : 13-08-07

返回页首 向下

Quantum Field Theory II - 页 2 Empty 回复: Quantum Field Theory II

帖子 由 一星 2014-08-18, 16:18

环 (代数)[编辑]



[ltr]的定义类似于可交换群,只不过在原来“+”的基础上又增添另一种运算“·”(注意我们这里所说的 + 与 · 一般不是我们所熟知的四则运算加法乘法)。在抽象代数中,研究的分支为环论

[/ltr]
[ltr]目录
  [隐藏[/ltr]


[size][ltr]

定义[编辑]
集合R和定义于其上的二元运算 + 和·,(R, +, ·)构成一个,若它们满足:
[/ltr][/size]

  1. (R, +)形成一个交换群,其单位元称为零元素,记作‘0’。即:

    • (R, +)是封闭的
    • (a + b) = (b + a)
    • (a + b) + c = a + (b + c)
    • 0 + a = a + 0 = a
    • ∀a ∃(−a) 满足 a + −a = −a + a = 0


  • (R, ·)形成一个半群,即:

    • (a·b)·c = a·(b·c)
    • (R, ·)是封闭的


  • 乘法关于加法满足分配律:

    • a·(b + c) = (a·b) + (a·c)
    • (a + b)·c = (a·c) + (b·c)



    [size][ltr]
    其中,乘法运算符·常被省略,所以 a·b 可简写为 ab。 此外,乘法是比加法优先的运算,所以 a + bc 其实是 a + (b·c)。
    基本性质[编辑]
    考虑一个环R,根据环的定义,易知R有以下性质:
    [/ltr][/size]

    • ∀a∈R,a·0 = 0·a = 0;(这也是为什么0作为加法群的单位元,却被称为“零元素”)
    • ∀a,b∈R,(-a)·b = a·(-b) = -(a·b);

    [size][ltr]
    环的相关概念[编辑]
    特殊的环[编辑]
    幺环若环R中,(R, ·)构成幺半群。即:∃1∈R,使得∀a∈R,有1·a=a·1=a。则R称为幺环。此时幺半群(R, ·)的幺元1,亦称为环R的幺元。交换环若环R中,(R, ·)还满足交换律,从而构成交换半群,即:∀a,b∈R,有ab=ba,则R称为交换环无零因子环若R中没有非0的零因子,则称R为为无零因子环
    [/ltr][/size]

    • 此定义等价于以下任何一条:

      • R\{0}对乘法形成半群;
      • R\{0}对乘法封闭;
      • R中非0元素的乘积非0;



    [size][ltr]
    整环无零因子的交换幺环称为整环
    例:整数环,多项式环
    唯一分解环若整环R中每个非零非可逆元素都能唯一分解,称R是唯一分解环.除环若环R是幺环,且R\{0}对R上的乘法形成一个,即:∀a∈R\{0},∃a-1∈R\{0},使得a-1·a=a·a-1=1。则R称为除环
    [/ltr][/size]

    • 除环不一定是交换环。反例:四元数环。
    • 交换的除环是

    [size][ltr]
    主理想环每个理想都是主理想的整环称为主理想环单环若幺环R中的极大理想是零理想,则称R为单环商环质环
    例子[编辑]
    [/ltr][/size]

    • 集环:非空集的集合R构成一个环,当且仅当它满足以下几个条件中任何一个:

      • R对集合的并和差运算封闭,即:∀E,F∈R ⇒ E∪F∈R,E-F∈R;
      • R对集合的交和对称差运算封闭,即:∀E,F∈R ⇒ E∩F∈R,E△F∈R;
      • R对集合的交,差以及无交并运算封闭。



    [size][ltr]
    这样得到的集环以交为乘法,对称差为加法;以空集为零元,并且由于∀E∈R,E∩E=E·E=E,因此它还是布尔环
    [/ltr][/size]
    [size][ltr]
    环的理想[编辑]
    主条目:理想
    考虑环(R, +, ),依环的定义知(R, +)是阿贝尔群。集合I ⊆ R,考虑以下条件:
    [/ltr][/size]

    1. (I, +) 构成 (R, +) 的子群。
    2. ∀i ∈ I,r ∈ R,有i·r ∈ I。
    3. ∀i ∈ I,r ∈ R,有r·i ∈ I。

    [size][ltr]
    若I满足条件1,2则称I是R的右理想; 若I满足条件1,3则称I是R的左理想; 若I满足条件1,2,3,即I既是R的右理想,也是R的左理想,则称I为R的双边理想,简称理想
    示例[编辑]
    [/ltr][/size]

    • 整数环的理想:整数环Z只有形如{nZ}的理想。

    [size][ltr]
    基本性质[编辑]
    [/ltr][/size]

    • 在环中,(左,右,双边)理想的和与交仍然是(左,右,双边)理想。
    • 在除环中,(左,右)理想只有平凡(左,右)理想。
    • 对于环R的两个理想A,B,记Quantum Field Theory II - 页 2 0eb23df7280cb65848b11661c12a0915。则由定义易知:

      1. 若A是R的左理想,则AB是R的左理想;
      2. 若B是R的右理想,则AB是R的右理想;
      3. 若A是R的左理想,B是R的右理想,则AB是R的双边理想。



    [size][ltr]
    相关概念[编辑]
    真(左,右,双边)理想若R的(左,右,双边)理想I满足:I是R的真子集,I称为R的真(左,右,双边)理想。极大(左,右,双边)理想环R及其真(左,右,双边)理想I,I被称为R的极大(左,右,双边)理想,若不存在R的真(左,右,双边)理想J,使得I是J的真子集。
    [/ltr][/size]

    • 若 I 是极大(左,右)理想,又是双边理想,则 I 是极大理想。
    • 极大双边理想不一定是极大(左,右)理想。

    [size][ltr]
    生成理想环R,A ⊆ R,定义=RA+AR+RAR+ZA,则易知:
    [/ltr][/size]

    [size][ltr]
    为由子集A生成的理想,A称为的生成元集。当A是有限集时,称为R的有限生成理想。
    [/ltr][/size]

    [size][ltr]
    主理想由环R中单个元素生成的理想称为R的主理想。即,设a ∈ R,则<{a}>称为R的主理想。素理想真理想I被称为R的素理想,若∀理想A,B ⊆ R,AB ⊆ I ⇒ A ⊆ I 或 B ⊆ I。素环若环R的零理想是素理想,则称R是素环(或质环)。无零因子环是素环。在交换环R中,真理想 I 是素理想的充分且必要条件是:Quantum Field Theory II - 页 2 199e770aefdf9e1969110b945e19e6ef是素环.半素理想环R的真理想I,若∀理想A,A2 ⊆ I ⇒ A ⊆ I。则称 I 是环R的半素理想
    [/ltr][/size]

    • 半素理想是一类比素理想相对较弱条件的理想,因为素理想是半素理想,但半素理想未必是素理想。




    [size][ltr]

    有关环的其它概念[编辑]
    [/ltr][/size]

    • 零因子 (zero divisor):
      主条目:零因子

    [size][ltr]
    设b是环中的非零元素,称a为左零因子,如果ab=0;同样可以定义右零因子。通称零因子;
    [/ltr][/size]
  • 一星
    一星

    帖子数 : 3787
    注册日期 : 13-08-07

    返回页首 向下

    2页/共4 上一页  1, 2, 3, 4  下一步

    返回页首


     
    您在这个论坛的权限:
    不能在这个论坛回复主题