范畴(论)
范畴(论)
范畴
维基百科,自由的百科全书
[ltr]范畴(希腊文为κατηγορια)一词一般来说是指最高概念,当我们称某种对象为一范畴时,多指某一种学科或领域,比如说“科学范畴”,“理性范畴”,等等。通常范畴性概念所涵盖的对象范围是最大的,在分类学中可以作为最高层次的类的称呼。
[/ltr]
数学上的范畴
指那些类似的数学对象以及它们之间的保持结构的映射。详见范畴论。
维基百科,自由的百科全书
[ltr]范畴(希腊文为κατηγορια)一词一般来说是指最高概念,当我们称某种对象为一范畴时,多指某一种学科或领域,比如说“科学范畴”,“理性范畴”,等等。通常范畴性概念所涵盖的对象范围是最大的,在分类学中可以作为最高层次的类的称呼。
[/ltr]
- 哲学上的范畴
- 亚里士多德著有《范畴篇》,他在书中论述了事物的所有十大基本方面(实体、数量、性质、关系、地点、时间、姿态、状况、活动和遭受),并称它们为范畴。
- 伊曼努尔·康德把范畴作为先天的理性,正是由于范畴的存在,我们才能够将经验转化为知识,并提出一个范畴体系,分为四类(量、质、关系和样式)范畴。
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
范畴论[编辑]
维基百科,自由的百科全书
[color][font][ltr]
范畴论是数学的一门学科,以抽象的方法来处理数学概念,将这些概念形式化成一组组的“物件”及“态射”。数学中许多重要的领域可以形式化成范畴,并且使用范畴论,令在这些领域中许多难理解、难捉摸的数学结论可以比没有使用范畴还会更容易叙述及证明。
范畴最容易理解的一个例子为集合范畴,其物件为集合,态射为集合间的函数。但需注意,范畴的物件不一定要是集合,态射也不一定要是函数;一个数学概念若可以找到一种方法,以符合物件及态射的定义,则可形成一个有效的范畴,且所有在范畴论中导出的结论都可应用在这个数学概念之上。
范畴最简单的例子之一为群胚,其态射皆为可逆的。群胚的概念在拓扑学中很重要。范畴现在在大部分的数学分支中都有出现,在理论计算机科学的某些领域中用于对应资料型别,而在数学物理中被用来描述向量空间。
范畴论不只是对研究范畴论的人有意义,对其他数学家而言也有着其他的意思。一个可追溯至1940年代的述语“一般化的抽象废话”,即被用来指范畴论那相对于其他传统的数学分支更高阶的抽象化。
背景[编辑]
研究范畴就是试图以“公理化”的方法抓住在各种相关连的“数学结构”中的共同特性,并以结构间的“结构保持函数”将这些结构相关起来。因此,对范畴论系统化的研究将允许任何一个此类数学结构的普遍结论由范畴的公理中证出。
考虑下面的例子:由群组成的类Grp 包含了所有具有“群结构”的物件。要证明有关群的定理,即可由此套公理进行逻辑的推导。例如,由公理中可立即证明出,群的单位元素是唯一的。
不是只专注在有特定结构的个别物件(如群)上,范畴论会着重在这些物件的态射(结构保持映射)上;经由研究这些态射,可以学到更多关于这些物件的结构。以群为例,其态射为群同态。两个群间的群同态会严格地“保持群的结构”,这是个以将一个群中有关结构的讯息运到另一个群的方法,使这个群可以看做是另一个群的“过程”。因此,对群同态的研究提供了一个得以研究群的普遍特性及群公理的推论的工具。
类似的研究也出现在其他许多的数学理论中,如在拓扑学中对拓扑空间的连续映射的研究(相关范畴称为Top),及对流形的光滑函数的研究等。
函子[编辑]
主条目:函子
再抽象化一次,范畴自身亦为数学结构的一种,因此可以寻找在某一意义下会保持其结构的“过程”;此一过程即称之为函子。函子将一个范畴的每个物件和另一个范畴的物件相关连起来,并将第一个范畴的每个态射和第二个范畴的态射相关连起来。
实际上,即是定义了一个“范畴和函子”的范畴,其元件为范畴,(范畴间的)态射为函子。
经由研究范畴和函子,不只是学习了一类数学结构,及在其之间的态射;还学习了“在不同类型的数学结构之间的关系”。此一基本概念首次出现于代数拓扑之中。不同的“拓扑”问题可以转换至通常较易解答的“代数”问题之上。在拓扑空间上如基本群或基本群胚等基本的架构,可以表示成由群胚所组成的范畴之间的基本函子,而这个概念在代数及其应用之中是很普遍的。
自然变换[编辑]
主条目:自然变换
再抽象化一次,架构通常会“自然地相关连”,这个第一眼会觉得很暧昧的概念,产生了自然变换(将一个函子映射至另一函子的方法)此一清楚的概念。许多数学上的重要架构可以从此一角度来研究。
历史注记[编辑]
范畴、函子和自然变换是由塞缪尔·艾伦伯格和桑德斯·麦克兰恩在1945年引进的。这些概念最初出现在拓扑学,尤其是代数拓扑学里,在同态(具有几何直观)转化成同调论(公理化方法)的过程中起了重要作用。乌拉姆说,在1930年代的后期,波兰学派中曾出现类似的想法。
艾伦堡和麦克兰说,他们的目的在于理解自然映射;为此,必须定义函子;为了定义函子,就自然地要引进范畴。
同调代数由于计算上的需要而使用范畴论,这对范畴论起到了推进作用;此后范畴论又在代数几何的公理化过程中得到发展。代数几何与罗素-怀特海德的关于数学统一性基础的观点相抵触。广义范畴论随后产生,且更容纳了语意灵活性和高阶逻辑等多种新特征的泛代数,现在被运用到数学的所有分支。
特殊范畴拓扑斯甚至可以代替公理集合论作为数学的基础。然而范畴论对这些范围广泛的基础应用还是有争议的;但作为构造性数学的基础或注释,范畴论被研究的相当透彻。尽管如此,公理集合论至今仍然是数学家们的通用语言,并没有被范畴论的注释所取代。将范畴论引入大学程度的教学(在《伯克霍夫-麦克兰》和《麦克兰-伯克霍夫》这两本抽象代数的教科书的区别上可以印证)还是遭到了相当的反对。
范畴逻辑是直觉逻辑中类型论的一个被明确定义的分支,在计算机学科的函数式编程和域理论中均有应用,并且都是在笛卡尔闭范畴中对λ演算的非句法性描述。至少,用范畴论可以精确地描述在这些相关的领域里什么是共同的(在抽象的意义上)。
范畴[编辑]
主条目:范畴 (数学)和态射
一个“范畴”C 是由如下3个数学实体所组成的:
[/ltr][/font][/color]
[color][font][ltr]
由以上公理可证得,每个物件都只存在一个单位态射。有些作者将物件本身用单位态射来定义,这在本质上是相同的。
如果对象的类确实是个集合,那么这种范畴就被称为“小范畴”。许多重要的范畴不是小范畴。
范畴中的态射有时又称为“箭号”,这种叫法来自于交换图。
范畴举例[编辑]
每一范畴都由其对象,态射,和复合态射来表述。为了方便起见,以下的“函数”即是指态射,不再一一说明。
[/ltr][/font][/color]
[color][font][ltr]
态射分类[编辑]
态射 f : A → B 称为
[/ltr][/font][/color]
[color][font][ltr]
映射之间的关系(比如 fg = h )在大多数情形下可用更直观的交换图来表示,在此图中对象被表示成顶点,态射被表示为箭头。
函子[编辑]
函子是范畴之间保持结构的映射。它们可以被看成以所有(小)范畴为成员的范畴中的态射。
一个从范畴 C 到范畴 D 的(协变)函子 F 被定义为:
[/ltr][/font][/color]
[color][font][ltr]
并使下列性质成立:
[/ltr][/font][/color]
[color][font][ltr]
一个从范畴 C 到范畴 D 的反变函子 F 不同于函子的地方仅在于将 D 中的映射箭头倒过来。比如说 f : X → Y 是 C 中任一态射,则有 F(f) : F(Y) → F(X) 。定义反变函子的最简捷的方法是作为 C 的反范畴 Cop 到 D 上的函子。
有关函子的具体例子和性质请详见函子条目。
自然和自然同构[编辑]
详细请见自然变换条目。
一个“自然变换”是两个函子之间的一个关系。函子通常用来描述“自然构造”,而自然变换则用来描述两个构造之间的“自然同态”。有时候,两个截然不同的构造具有“相同的”结果;这正可以用两个函子之间的自然关系来表述。
定义[编辑]
如果 F 和 G 是从范畴 C 到范畴 D 的(协变)函子,则从 F 到 G 的一个自然变换对于 C 中的任何对象 X ,都有一个 D 中相应的态射 ηX :F(X) → G(X) ,使得对 C 中的任何态射 f : X → Y ,都有 ηY · F(f) = G(f) · ηX ;这也就是说下列图表是可交换的:
两个函子 F 和 G 称为“自然同构”,如果存在一从 F 到 G 的自然变换,使得对所有 C 中的对象 X , ηX 是一个同构。
举例[编辑]
设 K 是体, V 是 K 上的任意向量空间,则有从向量空间到其二重对偶的一个“自然”内射型线性映射 V → V** 。这些映射在以下意义上是“自然”的:二重对偶运算是一个函子,这些映射正好构成了从恒等函子到二重对偶函子的自然变换。如果向量空间的维数是有限的,我们就得到一个自然同构;因为“有限向量空间自然同构于其二重对偶”。
考虑阿贝尔群及其同态构成的范畴 Ab 。对任意阿贝尔群 X 、 Y 和 Z ,我们得到群同构
Mor(X, Mor(Y, Z)) → Mor(XY, Z) 。
这些同构是“自然”的,因为它们定义了两个函子间的一种自然变换:Abop × Abop × Ab → Ab 。
泛结构,极限和上极限[编辑]
详见条目:泛性质,极限 (范畴论)
运用范畴论的语言,许多数学研究领域都可以归结成一些恰当的范畴,例如所有集合的范畴,所有群的范畴,所有拓扑的范畴,等等。这些范畴里的确有一些“特殊的”对象,例如空集或者两个拓扑的直积。然而,在范畴的定义里,对象是原子性的,那就是说,我们无法知道一个对象到底是集合,是拓扑,还是其它抽象概念。有必要定义特殊对象而不涉及对象的内在结构,这是一个挑战。那么到底怎样不用元素而定义空集,不用开集而定义拓扑积呢?
解决这个问题的途径是借用对象和对象之间的关系,而这些关系由相应范畴中的态射给出。现在问题转化为寻找泛性质,这些泛性质可以唯一地决定我们所感兴趣的对象。事实上,为数众多的重要结构都可用纯范畴论的方法来描述。在定义泛性质时,我们要用到一个非常关键的概念:范畴性“极限”和其“上极限”。
等价范畴[编辑]
详见条目:范畴的等价,范畴同构
人们很自然地要问,在什么样的情形下,两个范畴“在本质上是相同”的,换一句话来说,对其中一个范畴成立的定理,可以既定地转换成另一个范畴的定理。用来描述这种情形的主要方法是“范畴的等价性”,由函子给出。范畴的等价性在数学中有很多的应用。
进一步的概念和结果[编辑]
范畴和函子的定义只是范畴代数中最基本的部分。除此之外的重要部分如下列所述。基本上是以阅读顺序排列,尽管它们彼此之间有着内在的联系。
[/ltr][/font][/color]
[color][font][ltr]
范畴分类[编辑]
[/ltr][/font][/color]
维基百科,自由的百科全书
[color][font][ltr]
范畴论是数学的一门学科,以抽象的方法来处理数学概念,将这些概念形式化成一组组的“物件”及“态射”。数学中许多重要的领域可以形式化成范畴,并且使用范畴论,令在这些领域中许多难理解、难捉摸的数学结论可以比没有使用范畴还会更容易叙述及证明。
范畴最容易理解的一个例子为集合范畴,其物件为集合,态射为集合间的函数。但需注意,范畴的物件不一定要是集合,态射也不一定要是函数;一个数学概念若可以找到一种方法,以符合物件及态射的定义,则可形成一个有效的范畴,且所有在范畴论中导出的结论都可应用在这个数学概念之上。
范畴最简单的例子之一为群胚,其态射皆为可逆的。群胚的概念在拓扑学中很重要。范畴现在在大部分的数学分支中都有出现,在理论计算机科学的某些领域中用于对应资料型别,而在数学物理中被用来描述向量空间。
范畴论不只是对研究范畴论的人有意义,对其他数学家而言也有着其他的意思。一个可追溯至1940年代的述语“一般化的抽象废话”,即被用来指范畴论那相对于其他传统的数学分支更高阶的抽象化。
背景[编辑]
研究范畴就是试图以“公理化”的方法抓住在各种相关连的“数学结构”中的共同特性,并以结构间的“结构保持函数”将这些结构相关起来。因此,对范畴论系统化的研究将允许任何一个此类数学结构的普遍结论由范畴的公理中证出。
考虑下面的例子:由群组成的类Grp 包含了所有具有“群结构”的物件。要证明有关群的定理,即可由此套公理进行逻辑的推导。例如,由公理中可立即证明出,群的单位元素是唯一的。
不是只专注在有特定结构的个别物件(如群)上,范畴论会着重在这些物件的态射(结构保持映射)上;经由研究这些态射,可以学到更多关于这些物件的结构。以群为例,其态射为群同态。两个群间的群同态会严格地“保持群的结构”,这是个以将一个群中有关结构的讯息运到另一个群的方法,使这个群可以看做是另一个群的“过程”。因此,对群同态的研究提供了一个得以研究群的普遍特性及群公理的推论的工具。
类似的研究也出现在其他许多的数学理论中,如在拓扑学中对拓扑空间的连续映射的研究(相关范畴称为Top),及对流形的光滑函数的研究等。
函子[编辑]
主条目:函子
再抽象化一次,范畴自身亦为数学结构的一种,因此可以寻找在某一意义下会保持其结构的“过程”;此一过程即称之为函子。函子将一个范畴的每个物件和另一个范畴的物件相关连起来,并将第一个范畴的每个态射和第二个范畴的态射相关连起来。
实际上,即是定义了一个“范畴和函子”的范畴,其元件为范畴,(范畴间的)态射为函子。
经由研究范畴和函子,不只是学习了一类数学结构,及在其之间的态射;还学习了“在不同类型的数学结构之间的关系”。此一基本概念首次出现于代数拓扑之中。不同的“拓扑”问题可以转换至通常较易解答的“代数”问题之上。在拓扑空间上如基本群或基本群胚等基本的架构,可以表示成由群胚所组成的范畴之间的基本函子,而这个概念在代数及其应用之中是很普遍的。
自然变换[编辑]
主条目:自然变换
再抽象化一次,架构通常会“自然地相关连”,这个第一眼会觉得很暧昧的概念,产生了自然变换(将一个函子映射至另一函子的方法)此一清楚的概念。许多数学上的重要架构可以从此一角度来研究。
历史注记[编辑]
范畴、函子和自然变换是由塞缪尔·艾伦伯格和桑德斯·麦克兰恩在1945年引进的。这些概念最初出现在拓扑学,尤其是代数拓扑学里,在同态(具有几何直观)转化成同调论(公理化方法)的过程中起了重要作用。乌拉姆说,在1930年代的后期,波兰学派中曾出现类似的想法。
艾伦堡和麦克兰说,他们的目的在于理解自然映射;为此,必须定义函子;为了定义函子,就自然地要引进范畴。
同调代数由于计算上的需要而使用范畴论,这对范畴论起到了推进作用;此后范畴论又在代数几何的公理化过程中得到发展。代数几何与罗素-怀特海德的关于数学统一性基础的观点相抵触。广义范畴论随后产生,且更容纳了语意灵活性和高阶逻辑等多种新特征的泛代数,现在被运用到数学的所有分支。
特殊范畴拓扑斯甚至可以代替公理集合论作为数学的基础。然而范畴论对这些范围广泛的基础应用还是有争议的;但作为构造性数学的基础或注释,范畴论被研究的相当透彻。尽管如此,公理集合论至今仍然是数学家们的通用语言,并没有被范畴论的注释所取代。将范畴论引入大学程度的教学(在《伯克霍夫-麦克兰》和《麦克兰-伯克霍夫》这两本抽象代数的教科书的区别上可以印证)还是遭到了相当的反对。
范畴逻辑是直觉逻辑中类型论的一个被明确定义的分支,在计算机学科的函数式编程和域理论中均有应用,并且都是在笛卡尔闭范畴中对λ演算的非句法性描述。至少,用范畴论可以精确地描述在这些相关的领域里什么是共同的(在抽象的意义上)。
范畴[编辑]
主条目:范畴 (数学)和态射
一个“范畴”C 是由如下3个数学实体所组成的:
[/ltr][/font][/color]
- 1.一个类ob(C),其元素称为“物件”;
- 2. 一个类hom(C),其元素称为“态射”或“箭号”。每个态射f 都只有一个“源物件”a 及一个“目标物件”b(其中a 和b 都在ob(C) 内),称之为“从a 至b 的态射”,标记为f : a → b。
所有从a 至b 的态射所组成的类称之为“态射类”,标记为hom(a, b)、homC(a, b)、mor(a, b) 或C(a, b)。 - 3.一个二元运算,称为“态射复合”,使得对任意三个物件a、b 及c,都会有hom(b, c) × hom(a, b) → hom(a, c)。两个态射f : a → b及g : b → c 的复合写做g ∘ f 或gf,[1],并会符合下列两个公理:
- 结合律:若f : a → b、g : b → c及h : c → d,则h ∘ (g ∘ f) = (h ∘ g) ∘ f;
- 单位元:对任意物件x,总存在一个态射1x : x → x(称为x 的单位态射),使得对每个态射f : a → b,都会有1b ∘ f = f = f ∘ 1a。
[color][font][ltr]
由以上公理可证得,每个物件都只存在一个单位态射。有些作者将物件本身用单位态射来定义,这在本质上是相同的。
如果对象的类确实是个集合,那么这种范畴就被称为“小范畴”。许多重要的范畴不是小范畴。
范畴中的态射有时又称为“箭号”,这种叫法来自于交换图。
范畴举例[编辑]
每一范畴都由其对象,态射,和复合态射来表述。为了方便起见,以下的“函数”即是指态射,不再一一说明。
[/ltr][/font][/color]
- Set 是所有集合和它们彼此之间的全函数构成的范畴
- Ord 是所有预序集和其间的单调函数构成的范畴
- Mag 是所有广群和其间的同态映射构成的范畴
- Med 是所有对换广群和其间的同态映射构成的范畴
- Grp 是所有群和其间的群同态构成的范畴
- Ab 是所有阿贝尔群和其间的群同态构成的范畴
- VectK 是所有体 K(K固定)上的向量空间和其间的K-线性映射构成的范畴
- Top 是所有拓扑空间和其间的连续函数构成的范畴
- Met 是所有度量空间和其间的测地映射构成的范畴
- Uni 是所有一致空间和其间的一致连续函数构成的范畴
- 任何偏序集 (P, ≤) 构成一个小范畴,其对象是 P 的元素,其态射是从 x 指向 y 的箭头,其中 x ≤ y。
- 任何以单一对象 x (x为任意固定集合)为基础的独异点构成一个小范畴。独异点的任意元素通过二元运算给出一个从 x 到 x 的映射,所有这些映射恰好是范畴的所有态射;范畴的复合态射也正好是独异点的二元运算。事实上,范畴可以看成独异点的推广;关于独异点的定义和定理有一些可以推广到范畴。
- 任何有向图对应于一个小范畴:其对象是图的顶点,其态射是图的路径,其复合态射是路径的连接。称此范畴为有向图的“自由范畴”。
- 设 I 是个集合,“I上的离散范畴”是一个小范畴,以 I 的元素为对象,以 I 的恒等映射为其唯一的态射。
- 任何范畴 C 可以在另一种看法下成为一个新的范畴:它具有相同的对象,然而所有态射都是反方向的。称此为“对偶”或者“反范畴”,记作 Cop (op 来自英文的 opposite)。
- 设 C 和 D 是范畴,则它们的“直积范畴”C × D 被定义为:其对象为取自 C 的一个对象和取自 D 的一个对象的有序对,其态射亦为取自C 的一个态射和取自 D 的一个态射的有序对,其复合态射则由其分量分别复合。
[color][font][ltr]
态射分类[编辑]
态射 f : A → B 称为
[/ltr][/font][/color]
- 单态射,如果 fg1 = fg2 ,则有 g1 = g2 ,此关系对所有态射 g1 ,g2 : X → A 成立。
- 满态射,如果 g1f = g2f , 则有 g1 = g2 ,此关系对所有态射 g1 ,g2 : B → X 成立。
- 同构,如果存在逆态射 g : B → A 使得 fg = idB 并且 gf = idA。
- 自同构,如果 f 是同构态射,并且有 A = B 。
- 自同态,如果 A = B 。
[color][font][ltr]
映射之间的关系(比如 fg = h )在大多数情形下可用更直观的交换图来表示,在此图中对象被表示成顶点,态射被表示为箭头。
函子[编辑]
函子是范畴之间保持结构的映射。它们可以被看成以所有(小)范畴为成员的范畴中的态射。
一个从范畴 C 到范畴 D 的(协变)函子 F 被定义为:
[/ltr][/font][/color]
- 对 C 中任意对象 X ,都有一个 D 中相应的对象 F(X) 与其对应;
- 对 C 中任意态射 f : X → Y ,都有一个 D 中相应的态射 F(f) : F(X) →F(Y) 与其对应;
[color][font][ltr]
并使下列性质成立:
[/ltr][/font][/color]
- 对 C 中任意的对象 X ,都有 F(idX) = idF(X) 。
- 对 C 中任意两个态射 f : X → Y 和 g : Y → Z,都有 F(g · f) = F(g) ·F(f) 。
[color][font][ltr]
一个从范畴 C 到范畴 D 的反变函子 F 不同于函子的地方仅在于将 D 中的映射箭头倒过来。比如说 f : X → Y 是 C 中任一态射,则有 F(f) : F(Y) → F(X) 。定义反变函子的最简捷的方法是作为 C 的反范畴 Cop 到 D 上的函子。
有关函子的具体例子和性质请详见函子条目。
自然和自然同构[编辑]
详细请见自然变换条目。
一个“自然变换”是两个函子之间的一个关系。函子通常用来描述“自然构造”,而自然变换则用来描述两个构造之间的“自然同态”。有时候,两个截然不同的构造具有“相同的”结果;这正可以用两个函子之间的自然关系来表述。
定义[编辑]
如果 F 和 G 是从范畴 C 到范畴 D 的(协变)函子,则从 F 到 G 的一个自然变换对于 C 中的任何对象 X ,都有一个 D 中相应的态射 ηX :F(X) → G(X) ,使得对 C 中的任何态射 f : X → Y ,都有 ηY · F(f) = G(f) · ηX ;这也就是说下列图表是可交换的:
两个函子 F 和 G 称为“自然同构”,如果存在一从 F 到 G 的自然变换,使得对所有 C 中的对象 X , ηX 是一个同构。
举例[编辑]
设 K 是体, V 是 K 上的任意向量空间,则有从向量空间到其二重对偶的一个“自然”内射型线性映射 V → V** 。这些映射在以下意义上是“自然”的:二重对偶运算是一个函子,这些映射正好构成了从恒等函子到二重对偶函子的自然变换。如果向量空间的维数是有限的,我们就得到一个自然同构;因为“有限向量空间自然同构于其二重对偶”。
考虑阿贝尔群及其同态构成的范畴 Ab 。对任意阿贝尔群 X 、 Y 和 Z ,我们得到群同构
Mor(X, Mor(Y, Z)) → Mor(XY, Z) 。
这些同构是“自然”的,因为它们定义了两个函子间的一种自然变换:Abop × Abop × Ab → Ab 。
泛结构,极限和上极限[编辑]
详见条目:泛性质,极限 (范畴论)
运用范畴论的语言,许多数学研究领域都可以归结成一些恰当的范畴,例如所有集合的范畴,所有群的范畴,所有拓扑的范畴,等等。这些范畴里的确有一些“特殊的”对象,例如空集或者两个拓扑的直积。然而,在范畴的定义里,对象是原子性的,那就是说,我们无法知道一个对象到底是集合,是拓扑,还是其它抽象概念。有必要定义特殊对象而不涉及对象的内在结构,这是一个挑战。那么到底怎样不用元素而定义空集,不用开集而定义拓扑积呢?
解决这个问题的途径是借用对象和对象之间的关系,而这些关系由相应范畴中的态射给出。现在问题转化为寻找泛性质,这些泛性质可以唯一地决定我们所感兴趣的对象。事实上,为数众多的重要结构都可用纯范畴论的方法来描述。在定义泛性质时,我们要用到一个非常关键的概念:范畴性“极限”和其“上极限”。
等价范畴[编辑]
详见条目:范畴的等价,范畴同构
人们很自然地要问,在什么样的情形下,两个范畴“在本质上是相同”的,换一句话来说,对其中一个范畴成立的定理,可以既定地转换成另一个范畴的定理。用来描述这种情形的主要方法是“范畴的等价性”,由函子给出。范畴的等价性在数学中有很多的应用。
进一步的概念和结果[编辑]
范畴和函子的定义只是范畴代数中最基本的部分。除此之外的重要部分如下列所述。基本上是以阅读顺序排列,尽管它们彼此之间有着内在的联系。
[/ltr][/font][/color]
- 函子范畴 DC 以从 C 到 D 的函子为对象,以这些函子间的自然映射为泛射。米田引理刻划了函子范畴中可表示的函子,是范畴论最著名的基本结果之一。
- 对偶原则:范畴论中,每一陈述,定理,或定义都有其“对偶”,实质上可以通过“反转所有箭头”来得到。如果一个陈述在范畴 C 中成立,那么它的对偶将在其对偶范畴 Cop 中成立。这一对偶性在范畴论的任何层次都是普适的,由于它经常不是很清晰,对偶性的应用可以揭示惊人的关联性。
- 伴随函子:两个映射方向相反的函子对称为伴随函子,随着结合的顺序不同,分别为左伴随和右伴随。通常来自于由泛性质所定义的结构;也可以作为泛性质的一种更加抽象和更加强有力的看法。
[color][font][ltr]
范畴分类[编辑]
[/ltr][/font][/color]
- 在许多范畴中,态射集合 Mor(A,B) 不仅仅是集合,实际上是阿贝尔群,态射的复合具有群结构,也就是说是双线性的。这种范畴被称为预加性的。如果这种范畴还具有所有有限的积和上积,则称为加性范畴。如果所有具有一个核和一个上核,那么所有满射都是上核,所有单射都是核,我们称此为阿贝尔范畴。阿贝尔范畴的一个典型的例子是阿贝尔群所组成的范畴。
- 一个范畴被称为是完备的,如果所有极限存在。集合,阿贝尔群和拓扑空间的范畴是完备的。
- 一个范畴被称为是笛卡儿闭性的,如果它具有有限直积,并且一个定义在有限乘积上的态射总是可以表示成定义在其中一个因子上的态射。
- 一个拓扑斯是一种特殊的笛卡儿闭范畴,在其中可表述(公理化)所有的数学结构(就象传统上使用集合论可以表示所有数学结构)。一个拓扑斯也可以用来表述一个逻辑理论。
- 一个群胚是这样一种范畴,其中每一个映射都是一个同构。群胚是群、群作用和等价关系的推广。
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
系统界面作范畴,界面映射保结构。自然函子做投射,万界一心作统筹。
天地万界道演化,阴阳和合一自走。万界时间纤维丛,不同时刻作范畴。
天地万界道演化,阴阳和合一自走。万界时间纤维丛,不同时刻作范畴。
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
数数映射谓函数,函数至数是泛函。数至函数太抽象,函数函数称变换。
太极阴阳最显然,三才互盗是变换。类似情形修术数,周易易变类象担。
太极阴阳最显然,三才互盗是变换。类似情形修术数,周易易变类象担。
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
零阶张量最简单,简单复杂隐纠缠。
一阶张量是矢量,大小方向易显现。
二阶张量看阴阳,正方矩阵有点难。
万阶张量表万界,理解破除旧观念。
一阶张量是矢量,大小方向易显现。
二阶张量看阴阳,正方矩阵有点难。
万阶张量表万界,理解破除旧观念。
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
http://www.swarmagents.cn/swarma/detail.php?id=18555
物理中的近代数学 Modern mathematics in physics--文小刚
2014-04-02 03:27:17 物理
华尔兹的哀
得到原作者授权转载。小刚大神谈前沿物理中需要的新数学。
(人人网上流传甚广的日志,传说中的文教授的兔斯基+绿豆蛙卖萌体 ;-) )
It happens several times in the history of physics that a truly new phenomenon requires a new mathematics to describe it. In fact, the appearance of new mathematics is a sign of truly new discovery. For example, Newton′s theory of mechanics requires calculus (which was invented for that purpose). Einstein′s theory of general relativity requires Riemannian geometry. Quantum theory requires linear algebra. Newton′s case is the only time when the physicists are ahead of mathematicians. When Newton was developing his theory, the required mathematics has not been invented yet. Newton had to invent calculus to describe his theory.
Right now, we are facing a similar situation. It is an exciting time in physics.
For a long time, we thought that different phases of matter are described by symmetry breaking patterns, which are classified by group theory. Now we know that there are many new quantum phases of matter that are beyond symmetry breaking. Those new phases are described by the patterns of many-body quantum entanglement.
In condensed matter physics, many-body entanglement is the origin of many new states of quantum matter (known as topologically ordered states, such as spin liquids and quantum Hall states), which host emergent gauge fields, and emergent Fermi or fractional statistics. It might be possible that our vacuum is a particular (long-range) entangled system whose emergent gauge fields and fermions are the elementary particles in the standard model. Such an emergent picture represent an unification of gauge interaction and fermions (see the blog http://blog.renren.com/blog/548682771/910821104 ).
Many-body entanglement is a truly new phenomenon. It requires a new mathematics to describe it. But what mathematics describe pattern of many-body entanglement (and classify topologically ordered phases)? Have mathematicians already found the right mathematics for many-body entanglement, or we need to invent such a mathematics by ourselves?
To answer such question, we like to point out that, recently, it was realized that quantum many-body states (or many-body entanglement) can be divided into short-range entangled states and long-range entangled states.
The quantum phases with long-range entanglement correspond to topologically ordered phases. In two spatial dimensions, we have a quite good understanding of such long-range entangled states, which can be described by fusion category theory (see cond-mat/0404617). Topological order in higher dimensions is much less understood, which may need higher category to describe them.
Recently, we obtained a systematic understanding of the quantum phases with short-range entanglement and symmetry G in any dimensions Such kind of states can be "classified" by Borel group cohomology theory of the symmetry group. (Those phases are called symmetry protected trivial (SPT) phases (see wiki http://en.wikipedia.org/wiki/Symmetry_protected_topological_order ).
The quantum phases with short-range entanglement that break the symmetry are the familar Landau symmetry breaking states, which can be described by group theory.
So, to understand the symmetry breaking states, physicists have been forced to learn group theory. It looks like to understand patterns of many-body entanglement that correspond to topological order and SPT order, physicists will be forced to learn tensor category theory and group cohomology theory. In modern quantum many-body physics and in modern condensed matter physics, tensor category theory and group cohomology theory will be as useful as group theory. The days when physics students need to learn tensor category theory and group cohomology theory are coming, may be soon. Here is an on-line course for modern mathematics http://blog.renren.com/blog/548682771/910851613
Have mathematicians already found the right mathematics for many-body entanglement? Well, some related mathematics has been found, but we do not have a full story. To classify patterns of many-body entanglement in bosonic systems in any dimensions, we do need to develop new mathematics (and this is one of the frontier in Mathematics). To classify patterns of many-body entanglement in fermionic systems, we surely need to develop new mathematics (and this may become one of the frontier in Mathematics). It is an exciting time in physics and mathematics.
物理中的近代数学 Modern mathematics in physics--文小刚
2014-04-02 03:27:17 物理
华尔兹的哀
得到原作者授权转载。小刚大神谈前沿物理中需要的新数学。
(人人网上流传甚广的日志,传说中的文教授的兔斯基+绿豆蛙卖萌体 ;-) )
It happens several times in the history of physics that a truly new phenomenon requires a new mathematics to describe it. In fact, the appearance of new mathematics is a sign of truly new discovery. For example, Newton′s theory of mechanics requires calculus (which was invented for that purpose). Einstein′s theory of general relativity requires Riemannian geometry. Quantum theory requires linear algebra. Newton′s case is the only time when the physicists are ahead of mathematicians. When Newton was developing his theory, the required mathematics has not been invented yet. Newton had to invent calculus to describe his theory.
Right now, we are facing a similar situation. It is an exciting time in physics.
For a long time, we thought that different phases of matter are described by symmetry breaking patterns, which are classified by group theory. Now we know that there are many new quantum phases of matter that are beyond symmetry breaking. Those new phases are described by the patterns of many-body quantum entanglement.
In condensed matter physics, many-body entanglement is the origin of many new states of quantum matter (known as topologically ordered states, such as spin liquids and quantum Hall states), which host emergent gauge fields, and emergent Fermi or fractional statistics. It might be possible that our vacuum is a particular (long-range) entangled system whose emergent gauge fields and fermions are the elementary particles in the standard model. Such an emergent picture represent an unification of gauge interaction and fermions (see the blog http://blog.renren.com/blog/548682771/910821104 ).
Many-body entanglement is a truly new phenomenon. It requires a new mathematics to describe it. But what mathematics describe pattern of many-body entanglement (and classify topologically ordered phases)? Have mathematicians already found the right mathematics for many-body entanglement, or we need to invent such a mathematics by ourselves?
To answer such question, we like to point out that, recently, it was realized that quantum many-body states (or many-body entanglement) can be divided into short-range entangled states and long-range entangled states.
The quantum phases with long-range entanglement correspond to topologically ordered phases. In two spatial dimensions, we have a quite good understanding of such long-range entangled states, which can be described by fusion category theory (see cond-mat/0404617). Topological order in higher dimensions is much less understood, which may need higher category to describe them.
Recently, we obtained a systematic understanding of the quantum phases with short-range entanglement and symmetry G in any dimensions Such kind of states can be "classified" by Borel group cohomology theory of the symmetry group. (Those phases are called symmetry protected trivial (SPT) phases (see wiki http://en.wikipedia.org/wiki/Symmetry_protected_topological_order ).
The quantum phases with short-range entanglement that break the symmetry are the familar Landau symmetry breaking states, which can be described by group theory.
So, to understand the symmetry breaking states, physicists have been forced to learn group theory. It looks like to understand patterns of many-body entanglement that correspond to topological order and SPT order, physicists will be forced to learn tensor category theory and group cohomology theory. In modern quantum many-body physics and in modern condensed matter physics, tensor category theory and group cohomology theory will be as useful as group theory. The days when physics students need to learn tensor category theory and group cohomology theory are coming, may be soon. Here is an on-line course for modern mathematics http://blog.renren.com/blog/548682771/910851613
Have mathematicians already found the right mathematics for many-body entanglement? Well, some related mathematics has been found, but we do not have a full story. To classify patterns of many-body entanglement in bosonic systems in any dimensions, we do need to develop new mathematics (and this is one of the frontier in Mathematics). To classify patterns of many-body entanglement in fermionic systems, we surely need to develop new mathematics (and this may become one of the frontier in Mathematics). It is an exciting time in physics and mathematics.
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
Topological order
From Wikipedia, the free encyclopedia
[ltr]This article is about quantum physics. For the graph-theoretical concept, see topological sort.
In physics, topological order [1] is a kind of order in zero-temperaturephase of matter (also known as quantum matter). Macroscopically, topological order is defined/described by robust ground state degeneracy[2] and quantized non-Abelian geometric phases of degenerate ground states[1] (just like superfluid order is defined/described by vanishing viscosity and quantized vorticity). Microscopically, topological order corresponds to pattern of long-range quantum entanglement[3] (just like superfluid order corresponds to boson condensation). States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Topologically ordered states have some amazing properties, such asground state degeneracy that cannot be lifted by any local perturbations but depends on the topology of space, quasiparticle fractional statisticsand fractional charges, perfect conducting edge states even in presence of magnetic impurities, topological entanglement entropy, etc. Topological order is important in the study of several physical systems such as spin liquids,[4][5][6][7] the quantum Hall effect,[8][9] along with potential applications to fault-tolerant quantum computation.[10]
We note that topological insulators[11] and topological superconductors (beyond 1D) do not have topological order as defined above (see discussion below).[/ltr]
[ltr]
Background[edit]
Although all matter is formed by atoms, matter can have different properties and appear in different forms, such as solid, liquid, superfluid,magnet, etc. These various forms of matter are often called states of matter or phases. According to condensed matter physics and the principle of emergence, the different properties of materials originate from the different ways in which the atoms are organized in the materials. Those different organizations of the atoms (or other particles) are formally called the orders in the materials.[12]
Atoms can organize in many ways which lead to many different orders and many different types of materials. Landau symmetry-breaking theory provides a general understanding of these different orders. It points out that different orders really correspond to different symmetries in the organizations of the constituent atoms. As a material changes from one order to another order (i.e., as the material undergoes a phase transition), what happens is that the symmetry of the organization of the atoms changes.
For example, atoms have a random distribution in a liquid, so a liquid remains the same as we displace it by an arbitrary distance. We say that a liquid has a continuous translation symmetry. After a phase transition, a liquid can turn into a crystal. In a crystal, atoms organize into a regular array (a lattice). A lattice remains unchanged only when we displace it by a particular distance (integer times of lattice constant), so a crystal has onlydiscrete translation symmetry. The phase transition between a liquid and a crystal is a transition that reduces the continuous translation symmetry of the liquid to the discrete symmetry of the crystal. Such change in symmetry is called symmetry breaking. The essence of the difference between liquids and crystals is therefore that the organizations of atoms have different symmetries in the two phases.
Landau symmetry-breaking theory is a very successful theory. For a long time, physicists believed that Landau symmetry-breaking theory describes all possible orders in materials, and all possible (continuous) phase transitions.
Discovery and Characterization[edit]
However, since late 1980s, it has become gradually apparent that Landau symmetry-breaking theory may not describe all possible orders. In an attempt to explain high temperature superconductivity[13] the chiral spin state was introduced.[4][5] At first, physicists still wanted to use Landau symmetry-breaking theory to describe the chiral spin state. They identified the chiral spin state as a state that breaks the time reversal and parity symmetries, but not the spin rotation symmetry. This should be the end of story according to Landau's symmetry breaking description of orders. However, it was quickly realized that there are many different chiral spin states that have exactly the same symmetry, so symmetry alone was not enough to characterize different chiral spin states. This means that the chiral spin states contain a new kind of order that is beyond the usual symmetry description.[14] The proposed, new kind of order was named "topological order".[1] (The name "topological order" is motivated by the low energy effective theory of the chiral spin states which is a topological quantum field theory (TQFT)[15][16][17]). New quantum numbers, such asground state degeneracy[14] and the non-Abelian geometric phase of degenerate ground states,[1] were introduced to characterize/define the different topological orders in chiral spin states. Recently, it was shown that topological orders can also be characterized by topological entropy.[18][19]
But experiments soon indicated that chiral spin states do not describe high-temperature superconductors, and the theory of topological order became a theory with no experimental realization. However, the similarity between chiral spin states and quantum Hall states allows one to use the theory of topological order to describe different quantum Hall states.[2] Just like chiral spin states, different quantum Hall states all have the same symmetry and are beyond the Landau symmetry-breaking description. One finds that the different orders in different quantum Hall states can indeed be described by topological orders, so the topological order does have experimental realizations.
Fractional quantum Hall (FQH) states were discovered in 1982[8][9] before the introduction of the concept of topological order. But FQH states are not the first experimentally discovered topologically ordered states, assuperconductors, having Z2 topological order, were discovered earlier, in 1911. [notes 1]
Although topologically ordered states usually appear in strongly interacting boson/fermion systems, a simple kind of topological order can also appear in free fermion systems. This kind of topological order correspond in integral quantum Hall state, which can be characterized by the Chern number of the filled energy band if we consider integral quantum Hall state on a lattice. Theoretical calculations have proposed that such Chern number can be measured for a free fermion system experimentally.[23][24]It is also well known that such a Chern number can be measured (maybe indirectly) by edge states.
Mechanism[edit][/ltr]
List of unsolved problems in physics
[ltr]
A large class of 2+1D topological orders is realized through a mechanism called string-net condensation.[25] This class of topological orders can have a gapped edge and are classified by unitary fusion category (ormonoidal category) theory. One finds that string-net condensation can generate infinitely many different types of topological orders, which may indicate that there are many different new types of materials remaining to be discovered.
The collective motions of condensed strings give rise to excitations above the string-net condensed states. Those excitations turn out to be gauge bosons. The ends of strings are defects which correspond to another type of excitations. Those excitations are the gauge charges and can carryFermi or fractional statistics.[26]
The condensations of other extended objects such as "membranes",[27]"brane-nets",[28] and fractals also lead to topologically ordered phases[29]and "quantum glassiness".[30]
Mathematical Foundation[edit]
We know that group theory is the mathematical foundation of symmetry breaking orders. What is the mathematical foundation of topological order? The string-net condensation suggests that tensor category (such as fusion category or monoidal category) is part of the mathematical foundation of topological order in 2+1D. Topological order in higher dimensions may be related to n-Category theory. Quantum operator algebra is a very important mathematical tool in studying topological orders. A subclass of toplogical order—Abelian topological order in two dimensions—can be classified by a K-matrix approach.[31] Some also suggest that topological order is mathematically described by extended quantum symmetry.[32]
Applications[edit][/ltr]
[ltr]
The materials described by Landau symmetry-breaking theory have had a substantial impact on technology. For example, ferromagnetic materials that break spin rotation symmetry can be used as the media of digital information storage. A hard drive made of ferromagnetic materials can store gigabytes of information. Liquid crystals that break the rotational symmetry of molecules find wide application in display technology; nowadays one can hardly find a household without a liquid crystal display somewhere in it. Crystals that break translation symmetry lead to well defined electronic bands which in turn allow us to make semiconducting devices such as transistors. Different types of topological orders are even richer than different types of symmetry-breaking orders. This suggests their potential for exciting, novel applications.
One theorized application would be to use topologically ordered states as media for quantum computing in a technique known as topological quantum computing. A topologically ordered state is a state with complicated non-local quantum entanglement. The non-locality means that the quantum entanglement in a topologically ordered state is distributed among many different particles. As a result, the pattern of quantum entanglements cannot be destroyed by local perturbations. This significantly reduces the effect of decoherence. This suggests that if we use different quantum entanglements in a topologically ordered state to encode quantum information, the information may last much longer.[33]The quantum information encoded by the topological quantum entanglements can also be manipulated by dragging the topological defects around each other. This process may provide a physical apparatus for performing quantum computations.[34] Therefore, topologically ordered states may provide natural media for both quantum memory and quantum computation. Such realizations of quantum memory and quantum computation may potentially be made fault tolerant.[35]
Topologically ordered states in general have a special property that they contain non-trivial boundary states. In many cases, those boundary states become perfect conducting channel that can conduct electricity without generating heat.[36] This can be another potential application of topological order in electronic devices.
Similar to topological order, topological insulators[37][38] also have gapless boundary states. The boundary states of topological insulators play a key role in the detection and the application of topological insulators. This observation naturally leads to a question: are topological insulators examples of topologically ordered states? In fact topological insulators are different from topologically ordered states defined in this article.Topological insulators only have short-ranged entanglements, while the topological order defined in this article is a pattern of long-range entanglement. Topological order is robust against any perturbations. It has emergent gauge theory, emergent fractional charge and fractional statistics. In contrast, topological insulators are robust only against perturbations that respect time-reversal and U(1) symmetries. Their quasi-particle excitations have no fractional charge and fractional statistics. Strictly speaking, topological insulator is an example of SPT order,[39]where the first example of SPT order is the Haldane phase of spin-1 chain.[40]
Potential impact[edit]
Landau symmetry-breaking theory is a cornerstone of condensed matter physics. It is used to define the territory of condensed matter research. The existence of topological order appears to indicate that nature is much richer than Landau symmetry-breaking theory has so far indicated. So topological order opens up a new direction in condensed matter physics—a new direction of highly entangled quantum matter. We realize that quantum phases of matter (i.e. the zero-temperature phases of matter) can be divided into two classes: long range entangled states and short range entangled states.[3] Topological order is the notion that describes the long range entangled states: topological order = pattern of long range entanglements. Short range entangled states are trivial in the sense that they all belong to one phase. However, in the presence of symmetry, even short range entangled states are nontrivial and can belong to different phases. Those phases are said to contain SPT order.[39] SPT order generalizes the notion of topological insulator to interacting systems.
Some suggest that topological order (or more precisely, string-net condensation) in local bosonic (spin) models have the potential to provide a unified origin for photons, electrons and other elementary particles in our universe.[41]
See also[edit][/ltr]
[ltr]
Notes[edit][/ltr]
From Wikipedia, the free encyclopedia
[ltr]This article is about quantum physics. For the graph-theoretical concept, see topological sort.
In physics, topological order [1] is a kind of order in zero-temperaturephase of matter (also known as quantum matter). Macroscopically, topological order is defined/described by robust ground state degeneracy[2] and quantized non-Abelian geometric phases of degenerate ground states[1] (just like superfluid order is defined/described by vanishing viscosity and quantized vorticity). Microscopically, topological order corresponds to pattern of long-range quantum entanglement[3] (just like superfluid order corresponds to boson condensation). States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Topologically ordered states have some amazing properties, such asground state degeneracy that cannot be lifted by any local perturbations but depends on the topology of space, quasiparticle fractional statisticsand fractional charges, perfect conducting edge states even in presence of magnetic impurities, topological entanglement entropy, etc. Topological order is important in the study of several physical systems such as spin liquids,[4][5][6][7] the quantum Hall effect,[8][9] along with potential applications to fault-tolerant quantum computation.[10]
We note that topological insulators[11] and topological superconductors (beyond 1D) do not have topological order as defined above (see discussion below).[/ltr]
- 1 Background
- 2 Discovery and Characterization
- 3 Mechanism
- 4 Mathematical Foundation
- 5 Applications
- 6 Potential impact
- 7 See also
- 8 Notes
- 9 References
- 10 References by categories
- 10.1 Fractional quantum Hall states
- 10.2 Chiral spin states
- 10.3 Early characterization of FQH states
- 10.4 Topological order
- 10.5 Characterization of topological order
- 10.6 Effective theory of topological order
- 10.7 Mechanism of topological order
- 10.8 Quantum computing
- 10.9 Emergence of elementary particles
- 10.10 Quantum operator algebra
[ltr]
Background[edit]
Although all matter is formed by atoms, matter can have different properties and appear in different forms, such as solid, liquid, superfluid,magnet, etc. These various forms of matter are often called states of matter or phases. According to condensed matter physics and the principle of emergence, the different properties of materials originate from the different ways in which the atoms are organized in the materials. Those different organizations of the atoms (or other particles) are formally called the orders in the materials.[12]
Atoms can organize in many ways which lead to many different orders and many different types of materials. Landau symmetry-breaking theory provides a general understanding of these different orders. It points out that different orders really correspond to different symmetries in the organizations of the constituent atoms. As a material changes from one order to another order (i.e., as the material undergoes a phase transition), what happens is that the symmetry of the organization of the atoms changes.
For example, atoms have a random distribution in a liquid, so a liquid remains the same as we displace it by an arbitrary distance. We say that a liquid has a continuous translation symmetry. After a phase transition, a liquid can turn into a crystal. In a crystal, atoms organize into a regular array (a lattice). A lattice remains unchanged only when we displace it by a particular distance (integer times of lattice constant), so a crystal has onlydiscrete translation symmetry. The phase transition between a liquid and a crystal is a transition that reduces the continuous translation symmetry of the liquid to the discrete symmetry of the crystal. Such change in symmetry is called symmetry breaking. The essence of the difference between liquids and crystals is therefore that the organizations of atoms have different symmetries in the two phases.
Landau symmetry-breaking theory is a very successful theory. For a long time, physicists believed that Landau symmetry-breaking theory describes all possible orders in materials, and all possible (continuous) phase transitions.
Discovery and Characterization[edit]
However, since late 1980s, it has become gradually apparent that Landau symmetry-breaking theory may not describe all possible orders. In an attempt to explain high temperature superconductivity[13] the chiral spin state was introduced.[4][5] At first, physicists still wanted to use Landau symmetry-breaking theory to describe the chiral spin state. They identified the chiral spin state as a state that breaks the time reversal and parity symmetries, but not the spin rotation symmetry. This should be the end of story according to Landau's symmetry breaking description of orders. However, it was quickly realized that there are many different chiral spin states that have exactly the same symmetry, so symmetry alone was not enough to characterize different chiral spin states. This means that the chiral spin states contain a new kind of order that is beyond the usual symmetry description.[14] The proposed, new kind of order was named "topological order".[1] (The name "topological order" is motivated by the low energy effective theory of the chiral spin states which is a topological quantum field theory (TQFT)[15][16][17]). New quantum numbers, such asground state degeneracy[14] and the non-Abelian geometric phase of degenerate ground states,[1] were introduced to characterize/define the different topological orders in chiral spin states. Recently, it was shown that topological orders can also be characterized by topological entropy.[18][19]
But experiments soon indicated that chiral spin states do not describe high-temperature superconductors, and the theory of topological order became a theory with no experimental realization. However, the similarity between chiral spin states and quantum Hall states allows one to use the theory of topological order to describe different quantum Hall states.[2] Just like chiral spin states, different quantum Hall states all have the same symmetry and are beyond the Landau symmetry-breaking description. One finds that the different orders in different quantum Hall states can indeed be described by topological orders, so the topological order does have experimental realizations.
Fractional quantum Hall (FQH) states were discovered in 1982[8][9] before the introduction of the concept of topological order. But FQH states are not the first experimentally discovered topologically ordered states, assuperconductors, having Z2 topological order, were discovered earlier, in 1911. [notes 1]
Although topologically ordered states usually appear in strongly interacting boson/fermion systems, a simple kind of topological order can also appear in free fermion systems. This kind of topological order correspond in integral quantum Hall state, which can be characterized by the Chern number of the filled energy band if we consider integral quantum Hall state on a lattice. Theoretical calculations have proposed that such Chern number can be measured for a free fermion system experimentally.[23][24]It is also well known that such a Chern number can be measured (maybe indirectly) by edge states.
Mechanism[edit][/ltr]
List of unsolved problems in physics
Is topological order stable at non-zerotemperature? |
A large class of 2+1D topological orders is realized through a mechanism called string-net condensation.[25] This class of topological orders can have a gapped edge and are classified by unitary fusion category (ormonoidal category) theory. One finds that string-net condensation can generate infinitely many different types of topological orders, which may indicate that there are many different new types of materials remaining to be discovered.
The collective motions of condensed strings give rise to excitations above the string-net condensed states. Those excitations turn out to be gauge bosons. The ends of strings are defects which correspond to another type of excitations. Those excitations are the gauge charges and can carryFermi or fractional statistics.[26]
The condensations of other extended objects such as "membranes",[27]"brane-nets",[28] and fractals also lead to topologically ordered phases[29]and "quantum glassiness".[30]
Mathematical Foundation[edit]
We know that group theory is the mathematical foundation of symmetry breaking orders. What is the mathematical foundation of topological order? The string-net condensation suggests that tensor category (such as fusion category or monoidal category) is part of the mathematical foundation of topological order in 2+1D. Topological order in higher dimensions may be related to n-Category theory. Quantum operator algebra is a very important mathematical tool in studying topological orders. A subclass of toplogical order—Abelian topological order in two dimensions—can be classified by a K-matrix approach.[31] Some also suggest that topological order is mathematically described by extended quantum symmetry.[32]
Applications[edit][/ltr]
[ltr]
The materials described by Landau symmetry-breaking theory have had a substantial impact on technology. For example, ferromagnetic materials that break spin rotation symmetry can be used as the media of digital information storage. A hard drive made of ferromagnetic materials can store gigabytes of information. Liquid crystals that break the rotational symmetry of molecules find wide application in display technology; nowadays one can hardly find a household without a liquid crystal display somewhere in it. Crystals that break translation symmetry lead to well defined electronic bands which in turn allow us to make semiconducting devices such as transistors. Different types of topological orders are even richer than different types of symmetry-breaking orders. This suggests their potential for exciting, novel applications.
One theorized application would be to use topologically ordered states as media for quantum computing in a technique known as topological quantum computing. A topologically ordered state is a state with complicated non-local quantum entanglement. The non-locality means that the quantum entanglement in a topologically ordered state is distributed among many different particles. As a result, the pattern of quantum entanglements cannot be destroyed by local perturbations. This significantly reduces the effect of decoherence. This suggests that if we use different quantum entanglements in a topologically ordered state to encode quantum information, the information may last much longer.[33]The quantum information encoded by the topological quantum entanglements can also be manipulated by dragging the topological defects around each other. This process may provide a physical apparatus for performing quantum computations.[34] Therefore, topologically ordered states may provide natural media for both quantum memory and quantum computation. Such realizations of quantum memory and quantum computation may potentially be made fault tolerant.[35]
Topologically ordered states in general have a special property that they contain non-trivial boundary states. In many cases, those boundary states become perfect conducting channel that can conduct electricity without generating heat.[36] This can be another potential application of topological order in electronic devices.
Similar to topological order, topological insulators[37][38] also have gapless boundary states. The boundary states of topological insulators play a key role in the detection and the application of topological insulators. This observation naturally leads to a question: are topological insulators examples of topologically ordered states? In fact topological insulators are different from topologically ordered states defined in this article.Topological insulators only have short-ranged entanglements, while the topological order defined in this article is a pattern of long-range entanglement. Topological order is robust against any perturbations. It has emergent gauge theory, emergent fractional charge and fractional statistics. In contrast, topological insulators are robust only against perturbations that respect time-reversal and U(1) symmetries. Their quasi-particle excitations have no fractional charge and fractional statistics. Strictly speaking, topological insulator is an example of SPT order,[39]where the first example of SPT order is the Haldane phase of spin-1 chain.[40]
Potential impact[edit]
Landau symmetry-breaking theory is a cornerstone of condensed matter physics. It is used to define the territory of condensed matter research. The existence of topological order appears to indicate that nature is much richer than Landau symmetry-breaking theory has so far indicated. So topological order opens up a new direction in condensed matter physics—a new direction of highly entangled quantum matter. We realize that quantum phases of matter (i.e. the zero-temperature phases of matter) can be divided into two classes: long range entangled states and short range entangled states.[3] Topological order is the notion that describes the long range entangled states: topological order = pattern of long range entanglements. Short range entangled states are trivial in the sense that they all belong to one phase. However, in the presence of symmetry, even short range entangled states are nontrivial and can belong to different phases. Those phases are said to contain SPT order.[39] SPT order generalizes the notion of topological insulator to interacting systems.
Some suggest that topological order (or more precisely, string-net condensation) in local bosonic (spin) models have the potential to provide a unified origin for photons, electrons and other elementary particles in our universe.[41]
See also[edit][/ltr]
- AKLT Model
- Fractionalization
- Herbertsmithite
- Implicate Order
- Quantum topology
- Spin liquid
- String-net liquid
- Topological defect
- Topological degeneracy
- Topological entropy in physics
- Topological quantum field theory
- Topological quantum number
- Topological string theory
[ltr]
Notes[edit][/ltr]
- Jump up^ Note that superconductivity can be described by the Ginzburg-Landau theory with dynamical U(1) EM gauge field, which is a Z2 gauge theory, that is, an effective theory of Z2 topological order. The prediction of the vortex state in superconductors was one of the main successes of Ginzburg-Landau theory with dynamical U(1) gauge field. The vortex in the gauged Ginzburg-Landau theory is nothing but the Z2 flux line in the Z2 gauge theory. The Ginzburg-Landau theory without the dynamical U(1) gauge field fail to describe the real superconductors with dynamical electromagnetic interaction.[20][21][22] However, in condensed matter physics, superconductor usually refer to a state with non-dynamical EM gauge field. Such a state is a symmetry breaking state with no topological order.
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
[ltr]References[size=13][edit]
[/ltr][/size]
[size][ltr][color][font]
References by categories[edit]
Fractional quantum Hall states[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Chiral spin states[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Early characterization of FQH states[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Topological order[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Characterization of topological order[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Effective theory of topological order[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Mechanism of topological order[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Quantum computing[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Emergence of elementary particles[edit]
[/font][/color][/ltr][/size]
[size][ltr][color][font]
Quantum operator algebra[edit]
[/font][/color][/ltr][/size]
[/ltr][/size]
- ^ Jump up to:a b c d Xiao-Gang Wen, Topological Orders in Rigid States. Int. J. Mod. Phys. B4, 239 (1990)
- ^ Jump up to:a b Xiao-Gang Wen and Qian Niu, Phys. Rev. B41, 9377 (1990), "Ground state degeneracy of the FQH states in presence of random potential and on high genus Riemann su***ces"
- ^ Jump up to:a b Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order Phys. Rev. B 82, 155138 (2010)
- ^ Jump up to:a b V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett., 59, 2095 (1987), "Equivalence of the resonating-valence-bond and fractional quantum Hall states"
- ^ Jump up to:a b Xiao-Gang Wen, F. Wilczek and A. Zee, Phys. Rev., B39, 11413 (1989), "Chiral Spin States and Superconductivity"
- Jump up^ N. Read and Subir Sachdev, Large-N expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett. 66 1773 (1991)
- Jump up^ Xiao-Gang Wen, Mean Field Theory of Spin Liquid States with Finite Energy Gap and Topological orders, Phys. Rev. B 44 2664 (1991).
- ^ Jump up to:a b D. C. Tsui and H. L. Stormer and A. C. Gossard, Phys. Rev. Lett.,48, 1559 (1982), "Two-Dimensional Magnetotransport in the Extreme Quantum Limit"
- ^ Jump up to:a b R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983), "Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations"
- Jump up^ Kitaev, Alexei Yu (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics 303 (1). arXiv:quant-ph/9707021.Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. Retrieved 4 June 2012.
- Jump up^ Moore, Joel E. (2010). "The birth of topological insulators". Nature464: 194–198. Bibcode:2010Natur.464..194M.doi:10.1038/nature08916. Retrieved 4 June 2012.
- Jump up^ Xiao-Gang Wen, An Introduction of Topological Orders
- Jump up^ .G. Bednorz and K.A. Mueller (1986). "Possible high TC superconductivity in the Ba-La-Cu-O system". Z. Phys. B64 (2): 189.doi:10.1007/BF01303701.
- ^ Jump up to:a b Xiao-Gang Wen, Phys. Rev. B, 40, 7387 (1989), "Vacuum Degeneracy of Chiral Spin State in Compactified Spaces"
- Jump up^ Atiyah, Michael (1988), "Topological quantum field theories", Publications Mathe'matiques de l'IHéS (68): 175, MR1001453, ISSN 1618-1913, http://www.numdam.org/item?id=PMIHES_1988__68__175_0
- Jump up^ Witten, Edward (1988), "Topological quantum field theory",Communications in Mathematical Physics 117 (3): 353, MR953828, ISSN 0010-3616, http://projecteuclid.org/euclid.cmp/1104161738
- Jump up^ Yetter D.N., TQFTs from homotopy 2-types, J. Knot Theory 2(1993),113--123.
- Jump up^ Alexei Kitaev and John Preskill, Phys. Rev. Lett. 96, 110404 (2006), "Topological Entanglement Entropy"
- Jump up^ Levin M. and Wen X-G., Detecting topological order in a ground state wave function., Phys. Rev. Letts.,96(11), 110405, (2006)
- Jump up^ Xiao-Gang Wen, Mean Field Theory of Spin Liquid States with Finite Energy Gaps and Topological Orders, Phys. Rev. B44, 2664 (1991).
- Jump up^ T. H. Hansson, Vadim Oganesyan, S. L. Sondhi, Superconductors are topologically ordered, Annals Of Physics vol. 313, 497 (2004)
- Jump up^ Xiao-Liang Qi; Edward Witten; Shou-Cheng Zhang (2012). Axion topological field theory of topological superconductors. arXiv:1206.1407.Bibcode:2013PhRvB..87m4519Q. doi:10.1103/PhysRevB.87.134519.
- Jump up^ Juzeliūnas, Gediminas; Ian Spielman (2011). "Seeing Topological Order". Physics Today 4 (99). Bibcode:2011PhyOJ...4...99J.doi:10.1103/Physics.4.99.
- Jump up^ Zhang, Y. F.; Li, Huichao; Sheng, L.; Shen, R.; Xing, D. Y. (2012).Entanglement and Subsystem Particle Numbers in Free Fermion Systems. arXiv:1111.0791. Bibcode:2011arXiv1111.0791Z.
- Jump up^ Michael Levin, Xiao-Gang Wen, Phys. Rev. B, 71, 045110 (2005), "String-net condensation: A physical mechanism for topological phases"
- Jump up^ Levin M. and Wen X-G., Fermions, strings, and gauge fields in lattice spin models., Phys. Rev. B 67, 245316, (2003).
- Jump up^ Alioscia Hamma, Paolo Zanardi, Xiao-Gang Wen, Phys.Rev. B72035307 (2005), String and Membrane condensation on 3D lattices
- Jump up^ H. Bombin, M.A. Martin-Delgado, cond-mat/0607736, Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates
- Jump up^ Xiao-Gang Wen, Int. J. Mod. Phys. B5, 1641 (1991); Topological Orders and Chern-Simons Theory in strongly correlated quantum liquid. a review containing comments on topological orders in higher dimensions and/or inHiggs phases; also introduced a dimension index (DI) to characterize the robustness of the ground state degeneracy of a topologically ordered state. If DI is less or equal to 1, then topological orders cannot exist at finite temperature.
- Jump up^ Quantum Glassiness.,Chamon C., Phys. Rev. Lett., 94, 040402, (2005).
- Jump up^ B. Blok and Xiao-Gang Wen, Effective theories of Fractional Quantum Hall Effect at Generic Filling Fractions, Phys. Rev. B 42 8133 (1990); B. Blok and Xiao-Gang Wen, Effective theories of Fractional Quantum Hall Effect: Hierarchical Construction, Phys. Rev. B 42 8145 (1990); N. Read,Excitation structure of the hierarchy scheme in the fractional quantum Hall effect, Phys. Rev. Lett. 65 1502 (1990); Xiao-Gang Wen and A. Zee, A Classification and Matrix Formulation of the abelian FQH states, Phys. Rev. B 46 2290 (1992);
- Jump up^ Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review., Baianu, I.C., J.F. Glazebrook and R. Brown.,SIGMA-081030,(2009), 78 pages.
- Jump up^ Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill, J. Math. Phys., 43, 4452 (2002), Topological quantum memory
- Jump up^ Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang, Bull. Amer. Math. Soc., 40, 31 (2003), "Topological quantum computation"
- Jump up^ A. Yu. Kitaev Ann. Phys. (N.Y.), 303, 1 (2003), Fault-tolerant quantum computation by anyons
- Jump up^ Xiao-Gang Wen, Phys. Rev. B, 43, 11025 (1991), "Gapless Boundary Excitations in the FQH States and in the Chiral Spin States"
- Jump up^ C. Kane and E. Mele, Phys. Rev. Lett. 95, 226801 (2005).
- Jump up^ S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004).
- ^ Jump up to:a b Xie Chen, Zheng-Xin Liu, Xiao-Gang Wen, 2D symmetry protected topological orders and their protected gapless edge excitations Phys. Rev. B 84, 235141 (2011)
- Jump up^ F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983), Phys. Lett. 93,464 (1983); I. Affleck and F. D. M. Haldane, Pyhs. Rev. B 36, 5291 (1987); I. Affleck, J. Phys.: Condens. Matter. 1, 3047 (1989).
- Jump up^ Levin M. and Wen X-G., Colloquium: Photons and electrons as emergent phenomena, Rev. Mod. Phys. 77, 871 (2005), 4 pages; also, Quantum ether: Photons and electrons from a rotor model., arXiv:hep-th/0507118 (2007).
[size][ltr][color][font]
References by categories[edit]
Fractional quantum Hall states[edit]
[/font][/color][/ltr][/size]
- D. C. Tsui and H. L. Stormer and A. C. Gossard, Phys. Rev. Lett., 48, 1559 (1982), "Two-Dimensional Magnetotransport in the Extreme Quantum Limit"
- R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983), "Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations"
[size][ltr][color][font]
Chiral spin states[edit]
[/font][/color][/ltr][/size]
- V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett., 59, 2095 (1987), "Equivalence of the resonating-valence-bond and fractional quantum Hall states"
- Xiao-Gang Wen, F. Wilczek and A. Zee, Phys. Rev., B39, 11413 (1989), "Chiral Spin States and Superconductivity"
[size][ltr][color][font]
Early characterization of FQH states[edit]
[/font][/color][/ltr][/size]
- Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect, S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett., 58, 1252 (1987)
- Effective-Field-Theory Model for the Fractional Quantum Hall Effect, S. C. Zhang and T. H. Hansson and S. Kivelson, Phys. Rev. Lett., 62, 82 (1989)
[size][ltr][color][font]
Topological order[edit]
[/font][/color][/ltr][/size]
- Xiao-Gang Wen, Phys. Rev. B, 40, 7387 (1989), "Vacuum Degeneracy of Chiral Spin State in Compactified Spaces"
- Xiao-Gang Wen, Int. J. Mod. Phys., B4, 239 (1990), "Topological Orders in Rigid States"
- Xiao-Gang Wen, Quantum Field Theory of Many Body Systems - From the Origin of Sound to an Origin of Light and Electrons, Oxford Univ. Press, Oxford, 2004.
[size][ltr][color][font]
Characterization of topological order[edit]
[/font][/color][/ltr][/size]
- D. Arovas and J. R. Schrieffer and F. Wilczek, Phys. Rev. Lett., 53, 722 (1984), "Fractional Statistics and the Quantum Hall Effect"
- Xiao-Gang Wen and Qian Niu, Phys. Rev. B41, 9377 (1990), "Ground state degeneracy of the FQH states in presence of random potential and on high genus Riemann su***ces"
- Xiao-Gang Wen, Phys. Rev. B, 43, 11025 (1991), "Gapless Boundary Excitations in the FQH States and in the Chiral Spin States"
- Alexei Kitaev and John Preskill, Phys. Rev. Lett. 96, 110404 (2006), "Topological Entanglement Entropy"
- Michael Levin and Xiao-Gang Wen, Phys. Rev. Lett. 96, 110405 (2006), "Detecting Topological Order in a Ground State Wave Function"
[size][ltr][color][font]
Effective theory of topological order[edit]
[/font][/color][/ltr][/size]
- Quantum field theory and the Jones polynomial, E. Witten, Comm. Math. Phys., 121, 351 (1989)
[size][ltr][color][font]
Mechanism of topological order[edit]
[/font][/color][/ltr][/size]
- Michael Levin, Xiao-Gang Wen, Phys. Rev. B, 71, 045110 (2005), String-net condensation: A physical mechanism for topological phases,
- Chamon, C., Phys. Rev. Lett. 94, 040402 (2005), Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
- Alioscia Hamma, Paolo Zanardi, Xiao-Gang Wen, Phys.Rev. B72035307 (2005), String and Membrane condensation on 3D lattices
- H. Bombin, M.A. Martin-Delgado, cond-mat/0607736, Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates
[size][ltr][color][font]
Quantum computing[edit]
[/font][/color][/ltr][/size]
- Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, Sankar Das Sarma, http://www.arxiv.org/abs/0707.1889, 2007, "Non-Abelian Anyons and Topological Quantum Computation", Rev. Mod. Phys. 80, 1083 (2008).
- A. Yu. Kitaev, Ann. Phys. (N.Y.), 303, 1 (2003), Fault-tolerant quantum computation by anyons
- Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang, Bull. Amer. Math. Soc., 40, 31 (2003), "Topological quantum computation"
- Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill, J. Math. Phys., 43, 4452 (2002), Topological quantum memory
- Ady Stern and Bertrand I. Halperin, Phys. Rev. Lett., 96, 016802 (2006), Proposed Experiments to probe the Non-Abelian nu=5/2 Quantum Hall State
[size][ltr][color][font]
Emergence of elementary particles[edit]
[/font][/color][/ltr][/size]
- Xiao-Gang Wen, Phys. Rev. D68, 024501 (2003), Quantum order from string-net condensations and origin of light and massless fermions
- M. Levin and Xiao-Gang Wen, Fermions, strings, and gauge fields in lattice spin models., Phys. Rev. B 67, 245316, (2003).
- M. Levin and Xiao-Gang Wen, Colloquium: Photons and electrons as emergent phenomena, Rev. Mod. Phys. 77, Nu 12:19, 9 April 2009 (UTC)871 (2005), 4 pages; also, Quantum ether: Photons and electrons from a rotor model., arXiv:hep-th/0507118,2007.
- Zheng-Cheng Gu and Xiao-Gang Wen, gr-qc/0606100, A lattice bosonic model as a quantum theory of gravity,
[size][ltr][color][font]
Quantum operator algebra[edit]
[/font][/color][/ltr][/size]
- Yetter D.N., TQFTs from homotopy 2-types, J. Knot Theory 2 (1993), 113.
- Landsman N. P. and Ramazan B., Quantization of Poisson algebras associated to Lie algebroids, in Proc. Conf. on Groupoids in Physics, Analysis and Geometry(Boulder CO, 1999)', Editors J. Kaminker et al.,159{192 Contemp. Math. 282, Amer. Math. Soc., Providence RI, 2001,(also math{ph/001005.)
- Non-Abelian Quantum Algebraic Topology (NAQAT) 20 Nov. (2008),87 pages, Baianu, I.C.
- Levin A. and Olshanetsky M., Hamiltonian Algebroids and deformations of complex structures on Riemann curves, hep-th/0301078v1.
- Xiao-Gang Wen, Yong-Shi Wu and Y. Hatsugai., Chiral operator product algebra and edge excitations of a FQH droplet (pdf),Nucl. Phys. B422, 476 (1994): Used chiral operator product algebra to construct the bulk wave function, characterize the topological orders and calculate the edge states for some non-Abelian FQH states.
- Xiao-Gang Wen and Yong-Shi Wu., Chiral operator product algebra hidden in certain FQH states (pdf),Nucl. Phys. B419, 455 (1994): Demonstrated that non-Abelian topological orders are closely related to chiral operator product algebra (instead of conformal field theory).
- Non-Abelian theory.
- R. Brown et al. A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes, Volume 17, Numbers 3-4 / December, (2007), pages 353.,Springer,Netherlands,ISSN 1122-1151 (Print) 1572-8390 (Online). doi:10.1007/s10516-007-9012-1 .
- Ronald Brown, Higgins, P. J. and R. Sivera,:(2009), Nonabelian Algebraic Topology., vols.1 and 2, Ch.U. Press, in press.
- A Bibliography for Categories and Algebraic Topology Applications in Theoretical Physics
- Quantum Algebraic Topology (QAT)
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
同调论[编辑]
[ltr]数学中,同调论(homology theory)是拓扑空间“圈的同调”之直觉几何想法的公理化研究。它可以宽泛地定义为研究拓扑空间的同调理论。
[/ltr]
[size][ltr]
简单解释[编辑]
直觉上,同调是取一个等价关系,如果链 C - D 是一个高一维链的边界,则链 C 与 D 是同调的。最简单的例子是在图论中,有 C 和 D 两组顶点集,考虑到从 P到 Q 的有向边 E 的边缘是 Q-P。从 D 到 C 的一些边的集合,每一个与前一个相连,是一个同调。
一般的,一个 k-链视为形式组合
其中 是整数而 是 X 上的 k-维单形。这里的边缘取一个单形的边界;它导致一个高维概念,k=1 即类似于图论情形中的裂项和。这个解释是1900年的风格,从技术上讲有些原始。
以环面为例[编辑]
例如,若 X 是一个二维环面 T,T 上一个一维圈从直觉来说是 T 中曲线之线性组合,且这些曲线是闭合的(圈条件,等价于没有边界)。如果 C 与 D 是以同样方式绕 T 一周的圈,则我们可清晰地找出 T 上一个定向区域其边界是C − D。可以证明整系数 1-圈的同调类构成一个有两个生成元的自由阿贝尔群,他们是绕此环面的两种不同方式。
十九世纪[编辑]
这种层次的理解是十九世纪数学界中的共有性质,源于黎曼曲面的想法。十九世纪末,庞加莱给出了一个更一般但仍基于直觉的背景。
例如,考虑最先由庞加莱于1899年表述的一般斯托克斯定理:它必须涉及一个积分项(现在我们称为微分形式)和一个积分区域(一个 p-链),以及两类边缘算子,一个用现代术语是外微分,另一个是链上包含了定向的几何边缘算子,它可用于同调论。这两个算子是关于积分是伴随算子。
二十世纪[编辑]
粗糙地讲,对同调的几何论证直到二十世纪初才被严格的技术取代。起先时代的特色是使用组合拓扑(今日代数拓扑的先驱)。这假设了所处理的空间是单纯复形,但最感兴趣的空间通常是流形,故人为的三角化被引入了这个工具。始创者们比如所罗门·莱夫谢茨以及马斯顿·莫尔斯仍更偏好几何方法。组合观点使布劳威尔能证明比如单纯逼近定理之类的基本结论,基于同调是一个函子的想法。布劳威尔使用这个新工具能证明复分析基础的若尔当曲线定理,以及区域不变性;并消除了对拓扑论证的怀疑。
代数拓扑学[编辑]
通常将到“代数”拓扑的转变归功于埃米·诺特的影响,她坚持同调类属于商群——这种观点是基本的,现在已经作为定义[1]。事实上从1920年以来诺特与她的学生建立了任何环的模理论,这两种想法融合形成了系数取值于一个环的同调的概念。在此之前,系数(即链是空间上的基本几何链的线性组合的系数)通常是整数、实数或复数,或者有时为模2同余类。在新的情形下,没有理由不取模3同余类,例如:成为一个圈需满足更复杂的几何条件,例如图论中在每个顶点的边数都是3的倍数。但在代数几何中,定义没有任何新问题。万有系数定理指出整系数同调决定了所以其它同调理论,但利用了张量积;这不是止痛剂,在张量积有导出函子,导致一个一般的表述。
上同调与奇异同调[编辑]
1930年代是上同调论发展的十年,多个研究方向一起成长,而上面讲过在庞加莱工作中不明确的德拉姆上同调成为一个清楚的定理。上同调与同调是对偶理论;同时得知同调论,单纯同调,远非它故事的结束。奇异同调的定义避开了明显的三角化,其代价是引入无限生成模。
公理化与异常理论[编辑]
从1940年到1960年,代数拓扑迅速地发展,同调论的角色通常作为基本理论,容易计算,拓扑学家用它去计算其它函子。艾伦伯格与斯廷罗德的同调论公理化(艾伦伯格-斯廷罗德公理)揭示了同调理论的不同候选通常是,粗糙地讲,某些正合序列特别是迈耶-菲托里斯序列,以及算出了一个点的同调的维数公理。在拓扑K-理论与配边理论中导出的(上)同调,在同伦论中成为标准的推广到异常(上)同调论,中维数公里减弱了。他们对 CW复形范畴容易刻画。
[/ltr][/size]
[size][ltr]
同调论现状[编辑]
对更一般(即不那么良态)的空间,借助于从层论中的想法得到同调论的许多推广,特别是局部紧空间的博雷尔-穆尔同调。
同调论的基本链复形转置很久以前就成为了同调代数中独立的一种技巧,并独立地应用于例如群上同调。从而在数学中不再只有一个同调论,而是有许多同调和上同调论。
脚注[编辑]
[/ltr][/size]
[size][ltr]
参考文献[编辑]
[/ltr][/size]
[ltr]数学中,同调论(homology theory)是拓扑空间“圈的同调”之直觉几何想法的公理化研究。它可以宽泛地定义为研究拓扑空间的同调理论。
[/ltr]
[size][ltr]
简单解释[编辑]
直觉上,同调是取一个等价关系,如果链 C - D 是一个高一维链的边界,则链 C 与 D 是同调的。最简单的例子是在图论中,有 C 和 D 两组顶点集,考虑到从 P到 Q 的有向边 E 的边缘是 Q-P。从 D 到 C 的一些边的集合,每一个与前一个相连,是一个同调。
一般的,一个 k-链视为形式组合
其中 是整数而 是 X 上的 k-维单形。这里的边缘取一个单形的边界;它导致一个高维概念,k=1 即类似于图论情形中的裂项和。这个解释是1900年的风格,从技术上讲有些原始。
以环面为例[编辑]
例如,若 X 是一个二维环面 T,T 上一个一维圈从直觉来说是 T 中曲线之线性组合,且这些曲线是闭合的(圈条件,等价于没有边界)。如果 C 与 D 是以同样方式绕 T 一周的圈,则我们可清晰地找出 T 上一个定向区域其边界是C − D。可以证明整系数 1-圈的同调类构成一个有两个生成元的自由阿贝尔群,他们是绕此环面的两种不同方式。
十九世纪[编辑]
这种层次的理解是十九世纪数学界中的共有性质,源于黎曼曲面的想法。十九世纪末,庞加莱给出了一个更一般但仍基于直觉的背景。
例如,考虑最先由庞加莱于1899年表述的一般斯托克斯定理:它必须涉及一个积分项(现在我们称为微分形式)和一个积分区域(一个 p-链),以及两类边缘算子,一个用现代术语是外微分,另一个是链上包含了定向的几何边缘算子,它可用于同调论。这两个算子是关于积分是伴随算子。
二十世纪[编辑]
粗糙地讲,对同调的几何论证直到二十世纪初才被严格的技术取代。起先时代的特色是使用组合拓扑(今日代数拓扑的先驱)。这假设了所处理的空间是单纯复形,但最感兴趣的空间通常是流形,故人为的三角化被引入了这个工具。始创者们比如所罗门·莱夫谢茨以及马斯顿·莫尔斯仍更偏好几何方法。组合观点使布劳威尔能证明比如单纯逼近定理之类的基本结论,基于同调是一个函子的想法。布劳威尔使用这个新工具能证明复分析基础的若尔当曲线定理,以及区域不变性;并消除了对拓扑论证的怀疑。
代数拓扑学[编辑]
通常将到“代数”拓扑的转变归功于埃米·诺特的影响,她坚持同调类属于商群——这种观点是基本的,现在已经作为定义[1]。事实上从1920年以来诺特与她的学生建立了任何环的模理论,这两种想法融合形成了系数取值于一个环的同调的概念。在此之前,系数(即链是空间上的基本几何链的线性组合的系数)通常是整数、实数或复数,或者有时为模2同余类。在新的情形下,没有理由不取模3同余类,例如:成为一个圈需满足更复杂的几何条件,例如图论中在每个顶点的边数都是3的倍数。但在代数几何中,定义没有任何新问题。万有系数定理指出整系数同调决定了所以其它同调理论,但利用了张量积;这不是止痛剂,在张量积有导出函子,导致一个一般的表述。
上同调与奇异同调[编辑]
1930年代是上同调论发展的十年,多个研究方向一起成长,而上面讲过在庞加莱工作中不明确的德拉姆上同调成为一个清楚的定理。上同调与同调是对偶理论;同时得知同调论,单纯同调,远非它故事的结束。奇异同调的定义避开了明显的三角化,其代价是引入无限生成模。
公理化与异常理论[编辑]
从1940年到1960年,代数拓扑迅速地发展,同调论的角色通常作为基本理论,容易计算,拓扑学家用它去计算其它函子。艾伦伯格与斯廷罗德的同调论公理化(艾伦伯格-斯廷罗德公理)揭示了同调理论的不同候选通常是,粗糙地讲,某些正合序列特别是迈耶-菲托里斯序列,以及算出了一个点的同调的维数公理。在拓扑K-理论与配边理论中导出的(上)同调,在同伦论中成为标准的推广到异常(上)同调论,中维数公里减弱了。他们对 CW复形范畴容易刻画。
[/ltr][/size]
[size][ltr]
同调论现状[编辑]
对更一般(即不那么良态)的空间,借助于从层论中的想法得到同调论的许多推广,特别是局部紧空间的博雷尔-穆尔同调。
同调论的基本链复形转置很久以前就成为了同调代数中独立的一种技巧,并独立地应用于例如群上同调。从而在数学中不再只有一个同调论,而是有许多同调和上同调论。
脚注[编辑]
[/ltr][/size]
- ^ Hilton 1988,第284页
[size][ltr]
参考文献[编辑]
[/ltr][/size]
- Hilton, Peter, A Brief, Subjective History of Homology and Homotopy Theory in This Century, Mathematics Magazine. 1988, 60 (5): 282-291
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
同调
[ltr]数学上(特别是代数拓扑和抽象代数),同调 (homology,在希腊语中homos = 同)是一类将一个可换群或者模的序列和特定数学对象(例如拓扑空间或者群)联系起来的过程。背景知识请参看同调论。
对于一个特定的拓扑空间,同调群通常比同伦群要容易计算得多,因此通常来讲用同调来辅助空间分类要容易处理一些。
[/ltr]
[size][ltr]
同调群的构造[编辑]
其过程如下:给定对象,首先定义链复形,它包含了的信息。一个链复形是一个由群同态联系起来的可换群或者模的序列,群同态满足任何两个相连的同态的复合为0: 对于所有n成立。着意味着第n+1个映射的像包含在第n个映射的核中,我们定义X的第n阶同调群为因子群(因子模)
链复形称为正合的,如果(n + 1)阶映射的像总是等于n阶映射的核。因此的同调群是所关联的链复形和正合有“多远”的衡量。
例子[编辑]
导致引入这个概念的例子是代数拓扑:单纯复形的单纯同调。在这里就是中的n维可定向单纯形所生成的自由可换群或者模。这些映射称为边界映射,它将单纯形
映射为如下的和
如果我们将模取在一个域上,则的n阶同调的维数就是中n维的洞的个数。
仿照这个例子,可以定义任何拓扑空间的奇异同调。我们定义的上同调的链复形中的空间为为自由可换群(或者自由模),其生成元为所有从n为单纯形到的连续函数。同态从单纯形的边界映射得到。
抽象代数中,同调用于定义导出函子,例如,Tor函子。这里,我们可以从某个可加协变函子和某个模开始。的链复形定义如下:首先找到一个自由模和一个满同态。然后找到一个自由模和一个满同态。以该方式继续,得到一个自由模和同态的序列。将函子应用于这个序列,得到一个链复形;这个复形的同调仅依赖于和,并且按定义就是作用于的n阶导出函子。
同调函子[编辑]
链复形构成一个范畴:从链复形到链复形的态射是一个同态的序列,满足对于所有n成立。n阶同调 可以视为一个从链复形的范畴到可换群(或者模)的范畴的协变函子。
若链复形以协变的方式依赖于对象(也就是任何态射诱导出一个从的链复形到的链复形的态射),则是从所属的范畴到可换群(或模)的范畴的函子。
同调和上同调的唯一区别是上同调中的链复形以逆变方式依赖于,因此其同调群(在这个情况下称为上同调群并记为)构成从所属的范畴到可换群或者模的范畴的逆变函子。
性质[编辑]
若是链复形,满足出有限个外所有项都是零,而非零的都是有限生成可换群(或者有限维向量空间),则可以定义欧拉示性数
(可换群采用阶而向量空间的情况采用哈默尔维数)。事实上在同调的层次上也可以计算:
并且,特别是在代数拓扑中,这提供了两个计算产生链复形的对象的重要的不变量.
每个链复形的短正合序列
导致一个同调群的长正合序列
所有这个长正合序列中的映射由链复形间的映射导出,除了映射之外。后者称为 连接同态,有蛇引理给出。
参看[编辑]
[/ltr][/size]
[ltr]数学上(特别是代数拓扑和抽象代数),同调 (homology,在希腊语中homos = 同)是一类将一个可换群或者模的序列和特定数学对象(例如拓扑空间或者群)联系起来的过程。背景知识请参看同调论。
对于一个特定的拓扑空间,同调群通常比同伦群要容易计算得多,因此通常来讲用同调来辅助空间分类要容易处理一些。
[/ltr]
[size][ltr]
同调群的构造[编辑]
其过程如下:给定对象,首先定义链复形,它包含了的信息。一个链复形是一个由群同态联系起来的可换群或者模的序列,群同态满足任何两个相连的同态的复合为0: 对于所有n成立。着意味着第n+1个映射的像包含在第n个映射的核中,我们定义X的第n阶同调群为因子群(因子模)
链复形称为正合的,如果(n + 1)阶映射的像总是等于n阶映射的核。因此的同调群是所关联的链复形和正合有“多远”的衡量。
例子[编辑]
导致引入这个概念的例子是代数拓扑:单纯复形的单纯同调。在这里就是中的n维可定向单纯形所生成的自由可换群或者模。这些映射称为边界映射,它将单纯形
映射为如下的和
如果我们将模取在一个域上,则的n阶同调的维数就是中n维的洞的个数。
仿照这个例子,可以定义任何拓扑空间的奇异同调。我们定义的上同调的链复形中的空间为为自由可换群(或者自由模),其生成元为所有从n为单纯形到的连续函数。同态从单纯形的边界映射得到。
抽象代数中,同调用于定义导出函子,例如,Tor函子。这里,我们可以从某个可加协变函子和某个模开始。的链复形定义如下:首先找到一个自由模和一个满同态。然后找到一个自由模和一个满同态。以该方式继续,得到一个自由模和同态的序列。将函子应用于这个序列,得到一个链复形;这个复形的同调仅依赖于和,并且按定义就是作用于的n阶导出函子。
同调函子[编辑]
链复形构成一个范畴:从链复形到链复形的态射是一个同态的序列,满足对于所有n成立。n阶同调 可以视为一个从链复形的范畴到可换群(或者模)的范畴的协变函子。
若链复形以协变的方式依赖于对象(也就是任何态射诱导出一个从的链复形到的链复形的态射),则是从所属的范畴到可换群(或模)的范畴的函子。
同调和上同调的唯一区别是上同调中的链复形以逆变方式依赖于,因此其同调群(在这个情况下称为上同调群并记为)构成从所属的范畴到可换群或者模的范畴的逆变函子。
性质[编辑]
若是链复形,满足出有限个外所有项都是零,而非零的都是有限生成可换群(或者有限维向量空间),则可以定义欧拉示性数
(可换群采用阶而向量空间的情况采用哈默尔维数)。事实上在同调的层次上也可以计算:
并且,特别是在代数拓扑中,这提供了两个计算产生链复形的对象的重要的不变量.
每个链复形的短正合序列
导致一个同调群的长正合序列
所有这个长正合序列中的映射由链复形间的映射导出,除了映射之外。后者称为 连接同态,有蛇引理给出。
参看[编辑]
[/ltr][/size]
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
向量丛[编辑]
[ltr]数学上,向量丛是一个几何构造,为拓扑空间(或流形,或代数簇)的每一点相容地附上一个向量空间,而这些向量空间“粘起来”又构成一个拓扑空间(或流形,或代数簇)。 一个典型的例子是微分流形(Differentiable manifold)的切丛:对流形的每一点附上流形在该点的切空间。 另一个例子是法丛:给定一个平面上的光滑曲线,可在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。
这个条目主要解释有限维纤维的实向量丛。复向量丛也在很多地方有用;他们可以视为一种有附加结构的实向量丛。
向量丛是纤维丛的一种。
[/ltr]
[size][ltr]
定义和直接的结果[编辑]
一个实向量丛又以下数据给出:
[/ltr][/size]
[size][ltr]
开邻域U和同胚φ合起来叫做丛的局部平凡化。这表示映射π在局部看起来像U × Rn到U上的投影.
向量丛称为平凡,如果有一个整体平凡化,也就是如果它看起来像X × Rn →X.
每个向量丛π : E → X是满射,因为向量空间不能为空集。
每个纤维π−1({x})是一个有限维实向量空间,所以有一个维数dx.函数x |->dx是局部常数,也就是它在所有X的连通分支上常数。如果它在X上是全局常数的话,我们把这个维数叫做向量丛的阶。一阶向量丛也叫线丛。
向量丛态射[编辑]
一个从向量丛π1 : E1 → X1到向量丛π2 : E2 → X2的态射(morphism)是一对连续映射f : E1 → E2和g : X1 → X2使得
[/ltr][/size]
[size][ltr]
所有向量丛的类和丛的射组成了一个范畴。限制到光滑流形和光滑丛射,我们就有了光滑向量丛的范畴。
我们可以考虑有一个固定基空间X的所有向量丛组成的范畴。我们取那些在基空间X上为恒等映射(identity map)的射作为在这个范畴中的射. 也就是说,丛射满足下面的交换图:
[/ltr][/size][size][ltr]
(注意这个范畴不是可交换的;向量丛的射的核通常不能很自然的成为一个向量丛。)
截面和局部自由层[编辑]
给定一个向量丛π : E → X和一个开子集U,我们可以考虑π在U上的截面,也就是连续函数s : U → E满足πs = idU.本质上,截面给U的每一点一个从附在该点的向量空间中所取的向量,取值要有连续性。
例如,微分流形的切丛的截面就是流形上的向量场。
令F(U)为U上所有截面的集合. F(U)总有至少一个元素:把V中的x映射到π−1({x})的零元素的函数s.使用每点的加法和数乘,F(U)本身也成为了向量空间.这些向量空间的总和就是X上的向量空间的层。
若s属于F(U)而α : U → R是一连续映射,则αs属于F(U).我们可以看到F(U)是一个U上的连续实值函数的环上的模.进一步讲,若OX表示X上连续函数的层结构,则F是OX-模的一个层.
不是OX-模的每个层都是以这种方式从向量丛的导的:只有局部自由层可以从这种方法得到。(理由:局部的,我们要找一个投影U × Rn → U的一个截面,这些恰好是连续函数U → Rn,并且这一函数是连续函数U → Rn-元组.)
更进一步讲:X上的实向量丛的范畴是等价于OX-模的局部自由和有限生成的层的。
所以我们可以将向量丛视为位于OX-模的层的范畴内;而后者是可交换的,所以我们可以计算向量丛的射的核。
向量丛上的操作[编辑]
两个X上的在同一个域上的向量丛,有一个惠特尼和,在每点的纤维为那两个丛的纤维的直积。同样,纤维向量积和对偶空间丛也可以这样引入。
变种和推广[编辑]
向量丛是纤维丛的特例。
光滑向量丛定义为满足E和X是光滑流形,π : E → X是光滑映射,而局部平凡化映射φ是微分同胚的向量丛。
把实向量空间换成复的,就得到了复向量丛。这是结构群的约化的特例。也可以用其他拓扑域上的向量空间,但相对比较少见。
如果我们允许在局部平凡化中使用任意巴拿赫空间(而不仅是Rn),就可以得到巴拿赫丛.
参考[编辑]
[/ltr][/size]
[ltr]数学上,向量丛是一个几何构造,为拓扑空间(或流形,或代数簇)的每一点相容地附上一个向量空间,而这些向量空间“粘起来”又构成一个拓扑空间(或流形,或代数簇)。 一个典型的例子是微分流形(Differentiable manifold)的切丛:对流形的每一点附上流形在该点的切空间。 另一个例子是法丛:给定一个平面上的光滑曲线,可在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。
这个条目主要解释有限维纤维的实向量丛。复向量丛也在很多地方有用;他们可以视为一种有附加结构的实向量丛。
向量丛是纤维丛的一种。
[/ltr]
[size][ltr]
定义和直接的结果[编辑]
一个实向量丛又以下数据给出:
[/ltr][/size]
- 一个拓扑空间X("基空间")和E("全空间")
- 一个连续映射π : E → X("投影")
- 对X中的每个x,纤维上的实向量空间π−1({x})满足以下相容性条件:对X中的一点有一个开邻域U,一个自然数n,和一个同胚φ : U × Rn → π−1(U)使得对U中的每点x:
- πφ(x,v) = x 对所有Rn中的v成立
- 映射v |-> φ(x,v)导出一个向量空间Rn和π−1({x})的同构.
[size][ltr]
开邻域U和同胚φ合起来叫做丛的局部平凡化。这表示映射π在局部看起来像U × Rn到U上的投影.
向量丛称为平凡,如果有一个整体平凡化,也就是如果它看起来像X × Rn →X.
每个向量丛π : E → X是满射,因为向量空间不能为空集。
每个纤维π−1({x})是一个有限维实向量空间,所以有一个维数dx.函数x |->dx是局部常数,也就是它在所有X的连通分支上常数。如果它在X上是全局常数的话,我们把这个维数叫做向量丛的阶。一阶向量丛也叫线丛。
向量丛态射[编辑]
一个从向量丛π1 : E1 → X1到向量丛π2 : E2 → X2的态射(morphism)是一对连续映射f : E1 → E2和g : X1 → X2使得
[/ltr][/size]
- gπ1 = π2f
- 对于每个X1中的x,由f诱导的映射π1−1({x}) → π2−1({g(x)})是一个向量空间的线性变换。
[size][ltr]
所有向量丛的类和丛的射组成了一个范畴。限制到光滑流形和光滑丛射,我们就有了光滑向量丛的范畴。
我们可以考虑有一个固定基空间X的所有向量丛组成的范畴。我们取那些在基空间X上为恒等映射(identity map)的射作为在这个范畴中的射. 也就是说,丛射满足下面的交换图:
[/ltr][/size][size][ltr]
(注意这个范畴不是可交换的;向量丛的射的核通常不能很自然的成为一个向量丛。)
截面和局部自由层[编辑]
给定一个向量丛π : E → X和一个开子集U,我们可以考虑π在U上的截面,也就是连续函数s : U → E满足πs = idU.本质上,截面给U的每一点一个从附在该点的向量空间中所取的向量,取值要有连续性。
例如,微分流形的切丛的截面就是流形上的向量场。
令F(U)为U上所有截面的集合. F(U)总有至少一个元素:把V中的x映射到π−1({x})的零元素的函数s.使用每点的加法和数乘,F(U)本身也成为了向量空间.这些向量空间的总和就是X上的向量空间的层。
若s属于F(U)而α : U → R是一连续映射,则αs属于F(U).我们可以看到F(U)是一个U上的连续实值函数的环上的模.进一步讲,若OX表示X上连续函数的层结构,则F是OX-模的一个层.
不是OX-模的每个层都是以这种方式从向量丛的导的:只有局部自由层可以从这种方法得到。(理由:局部的,我们要找一个投影U × Rn → U的一个截面,这些恰好是连续函数U → Rn,并且这一函数是连续函数U → Rn-元组.)
更进一步讲:X上的实向量丛的范畴是等价于OX-模的局部自由和有限生成的层的。
所以我们可以将向量丛视为位于OX-模的层的范畴内;而后者是可交换的,所以我们可以计算向量丛的射的核。
向量丛上的操作[编辑]
两个X上的在同一个域上的向量丛,有一个惠特尼和,在每点的纤维为那两个丛的纤维的直积。同样,纤维向量积和对偶空间丛也可以这样引入。
变种和推广[编辑]
向量丛是纤维丛的特例。
光滑向量丛定义为满足E和X是光滑流形,π : E → X是光滑映射,而局部平凡化映射φ是微分同胚的向量丛。
把实向量空间换成复的,就得到了复向量丛。这是结构群的约化的特例。也可以用其他拓扑域上的向量空间,但相对比较少见。
如果我们允许在局部平凡化中使用任意巴拿赫空间(而不仅是Rn),就可以得到巴拿赫丛.
参考[编辑]
[/ltr][/size]
- Milnor, John W.; Stasheff, James D. Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. vii+331 pp. ISBN 0-691-08122-0.
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
陈类[编辑]
[ltr]数学上,特别是在代数拓扑和微分几何中,陈类(Chern class)是一类复向量丛的示性类, 类比于斯蒂弗尔-惠特尼类(Stiefel-Whitney class)作为实向量丛的示性类。
陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。
[/ltr]
[size][ltr]
定义[编辑]
给定一个拓扑空间X上的一个复向量丛E,E的陈类是一系列X的上同调的元素。E的第k个陈类通常记为ck(E),是X的整数系数的上同调群H2k(X;Z)中的一个元素,并且满足如下公理:
公理1. 对于任何
公理2. 自然性:如果是一个复向量丛, 是一个连续映射,是拉回的向量丛,那么对任意k,.
公理3. 惠特尼求和公式:如果是两个复向量丛,那么它们的直和 的陈类是
.
公理4. 如果是复射影直线上的超平面丛,那么的庞加莱对偶是.
等价定义[编辑]
同时,有很多处理这个定义的办法:陈省身最初使用了微分几何;在代数拓扑中,陈类是通过同伦理论定义的,该理论提供了把E 和一个分类空间(在这个情况下是格拉斯曼流形联系起来的映射;还有亚历山大·格罗滕迪克的一种办法,表明公理上只需定义线丛的情况就够了。陈类也自然的出现在代数几何中。
直观地说,陈类和向量丛的截面"所需要的0"的个数相关。
殆复流形的陈类和配边[编辑]
陈类的理论导致了殆复流形的配边不变量的研究。
若M是一个复流形,则其切丛是一个复向量丛。M的陈类定义为其切丛的陈类。若M是紧的2d维的,则每个陈类中的2d次单项式可以和M的基本类配对,得到一个整数,称为M的陈数。
若M′ 是另一个同维度的近复流形,则它和M配边,当且仅当M′和M陈数相同.
推广[编辑]
陈类理论有个一般化,其中普通的上同调由一个广义上同调群理论所代替。使得这种一般化成为可能的称为复可定向的理论。陈类的形式化属性依然相同,但有一个关键的不同:计算线丛的张量积的第一陈类的规则不是各个因子的(普通)加法而是一个形式化群法则(formal group law)。
参考文献[编辑]
[/ltr][/size]
[ltr]数学上,特别是在代数拓扑和微分几何中,陈类(Chern class)是一类复向量丛的示性类, 类比于斯蒂弗尔-惠特尼类(Stiefel-Whitney class)作为实向量丛的示性类。
陈类因陈省身而得名,他在1940年代第一个给出了它们的一般定义。
[/ltr]
[size][ltr]
定义[编辑]
给定一个拓扑空间X上的一个复向量丛E,E的陈类是一系列X的上同调的元素。E的第k个陈类通常记为ck(E),是X的整数系数的上同调群H2k(X;Z)中的一个元素,并且满足如下公理:
公理1. 对于任何
公理2. 自然性:如果是一个复向量丛, 是一个连续映射,是拉回的向量丛,那么对任意k,.
公理3. 惠特尼求和公式:如果是两个复向量丛,那么它们的直和 的陈类是
.
公理4. 如果是复射影直线上的超平面丛,那么的庞加莱对偶是.
等价定义[编辑]
同时,有很多处理这个定义的办法:陈省身最初使用了微分几何;在代数拓扑中,陈类是通过同伦理论定义的,该理论提供了把E 和一个分类空间(在这个情况下是格拉斯曼流形联系起来的映射;还有亚历山大·格罗滕迪克的一种办法,表明公理上只需定义线丛的情况就够了。陈类也自然的出现在代数几何中。
直观地说,陈类和向量丛的截面"所需要的0"的个数相关。
殆复流形的陈类和配边[编辑]
陈类的理论导致了殆复流形的配边不变量的研究。
若M是一个复流形,则其切丛是一个复向量丛。M的陈类定义为其切丛的陈类。若M是紧的2d维的,则每个陈类中的2d次单项式可以和M的基本类配对,得到一个整数,称为M的陈数。
若M′ 是另一个同维度的近复流形,则它和M配边,当且仅当M′和M陈数相同.
推广[编辑]
陈类理论有个一般化,其中普通的上同调由一个广义上同调群理论所代替。使得这种一般化成为可能的称为复可定向的理论。陈类的形式化属性依然相同,但有一个关键的不同:计算线丛的张量积的第一陈类的规则不是各个因子的(普通)加法而是一个形式化群法则(formal group law)。
参考文献[编辑]
[/ltr][/size]
- Chern, Shiing-Shen, Characteristic classes of Hermitian manifolds,Annals of Mathematics. Second Series. 1946, 47: 85-121,MR0015793, ISSN 0003-486X
- Milnor, John W.; Stasheff, James D. Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. vii+331 pp. ISBN 0-691-08122-0.
- Chern, Shiing-Shen Complex Manifolds Without Potential Theory(Springer-Verlag Press, 1995) ISBN 0-387-90422-0, ISBN 3-540-90422-0.
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
Morse theory
From Wikipedia, the free encyclopedia
(Redirected from Morse function)
[ltr]"Morse function" redirects here. In another context, a "Morse function" can also mean an anharmonic oscillator: see Morse potential
In differential topology, Morse theory enables one to analyze thetopology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.
Before Morse, Arthur Cayley and James Clerk Maxwell had developed some of the ideas of Morse theory in the context of topography. Morse originally applied his theory to geodesics (critical points of the energyfunctional on paths). These techniques were used in Raoul Bott's proof of his periodicity theorem.
The analogue of Morse theory for complex manifolds is Picard–Lefschetz theory.
[/ltr]
[size][ltr]
Basic concepts[edit]
[/ltr][/size][size][ltr]
Consider, for purposes of illustration, a mountainous landscape M. If f is the function M→ R sending each point to its elevation, then the inverse imageof a point in R (a level set) is simply a contour line. Each connected component of a contour line is either a point, a simpleclosed curve, or a closed curve with a double point. Contour lines may also have points of higher order (triple points, etc.), but these are unstable and may be removed by a slight deformation of the landscape. Double points in contour lines occur at saddle points, or passes. Saddle points are points where the surrounding landscape curves up in one direction and down in the other.
[/ltr][/size][size][ltr]
Imagine flooding this landscape with water. Then, the region covered by water when the water reaches an elevation of a isf−1(−∞, a], or the points with elevation less than or equal to a. Consider how the topology of this region changes as the water rises. It appears, intuitively, that it does not change except when a passes the height of a critical point; that is, a point where the gradient of f is 0(that is the Jacobian matrix acting as a linear map from the tangent space at that point to the tangent space at its image under the map f does not have maximal rank). In other words, it does not change except when the water either (1) starts filling a basin, (2) covers a saddle (a mountain pass), or (3) submerges a peak.
[/ltr][/size][size][ltr]
To each of these three types of critical points – basins, passes, and peaks (also called minima, saddles, and maxima) – one associates a number called the index. Intuitively speaking, the index of a critical point b is the number of independent directions around b in which f decreases. Therefore, the indices of basins, passes, and peaks are 0, 1, and 2, respectively. Rigorously, index of a critical point is the dimension of the negative-definite submatrix of the hessian matrix calculated at that point . In case of smooth maps, the hessian matrix turns out to be a diagonal matrix
Define Ma as f−1(−∞, a]. Leaving the context of topography, one can make a similar analysis of how the topology of Ma changes as a increases whenM is a torus oriented as in the image and f is projection on a vertical axis, taking a point to its height above the plane.
[/ltr][/size]
[size][ltr]
Starting from the bottom of the torus, let p, q, r, and s be the four critical points of index 0, 1, 1, and 2, respectively. When a is less than 0, Ma is the empty set. After apasses the level of p, when 0<a<f(q), then Ma is a disk, which is homotopy equivalent to a point (a 0-cell), which has been "attached" to the empty set. Next, when a exceeds the level of q, andf(q)<a<f(r), then Ma is a cylinder, and is homotopy equivalent to a disk with a 1-cell attached (image at left). Once a passes the level ofr, and f(r)<a<f(s), then Ma is a torus with a disk removed, which is homotopy equivalent to a cylinderwith a 1-cell attached (image at right). Finally, when a is greater than the critical level of s, Ma is a torus. A torus, of course, is the same as a torus with a disk removed with a disk (a 2-cell) attached.
One therefore appears to have the following rule: the topology of Mα does not change except when α passes the height of a critical point, and when α passes the height of a critical point of index γ, a γ-cell is attached to Mα. This does not address the question of what happens when two critical points are at the same height. That situation can be resolved by a slight perturbation of f. In the case of a landscape (or a manifold embedded inEuclidean space), this perturbation might simply be tilting the landscape slightly, or rotating the coordinate system.
This rule, however, is false as stated. To see this, let M = R and let f(x) =x3. Then 0 is a critical point of f, but the topology of Mα does not change when α passes 0. In fact, the concept of index does not make sense. The problem is that the second derivative is also 0 at 0. This kind of situation is called a degenerate critical point. Note that this situation is unstable: by rotating the coordinate system under the graph, the degenerate critical point either is removed or breaks up into two non-degenerate critical points.
Formal development[edit]
For a real-valued smooth function f : M → R on a differentiable manifoldM, the points where the differential of f vanishes are called critical points off and their images under f are called critical values. If at a critical point b, the matrix of second partial derivatives (the Hessian matrix) is non-singular, then b is called a non-degenerate critical point; if the Hessian is singular then b is a degenerate critical point.
For the functions
from R to R, f has a critical point at the origin if b=0, which is non-degenerate if c≠0 (i.e. f is of the form a+cx2+...) and degenerate if c=0 (i.e.f is of the form a+dx3+...). A less trivial example of a degenerate critical point is the origin of the monkey saddle.
The index of a non-degenerate critical point b of f is the dimension of the largest subspace of the tangent space to M at b on which the Hessian is negative definite. This corresponds to the intuitive notion that the index is the number of directions in which f decreases. The degeneracy and index of a critical point are independent of the choice of the local coordinate system used, as shown by Sylvester's Law.
Morse lemma[edit]
Let b be a non-degenerate critical point of f : M → R. Then there exists achart (x1, x2, ..., xn) in a neighborhood U of b such that for all iand
throughout U. Here α is equal to the index of f at b. As a corollary of the Morse lemma, one sees that non-degenerate critical points are isolated. (Regarding an extension to the complex domain see Complex Morse Lemma. For a generalization, see Morse-Palais lemma).
Fundamental theorems[edit]
A smooth real-valued function on a manifold M is a Morse function if it has no degenerate critical points. A basic result of Morse theory says that almost all functions are Morse functions. Technically, the Morse functions form an open, dense subset of all smooth functions M → R in the C2topology. This is sometimes expressed as "a typical function is Morse" or "a generic function is Morse".
As indicated before, we are interested in the question of when the topology of Ma = f−1(−∞, a] changes as a varies. Half of the answer to this question is given by the following theorem.
Theorem. Suppose f is a smooth real-valued function on M, a < b,f−1[a, b] is compact, and there are no critical values between a and b. Then Ma is diffeomorphic to Mb, and Mb deformation retracts onto Ma.
It is also of interest to know how the topology of Ma changes when apasses a critical point. The following theorem answers that question.
Theorem. Suppose f is a smooth real-valued function on M and p is a non-degenerate critical point of f of index γ, and that f(p) = q. Supposef−1[q−ε, q+ε] is compact and contains no critical points besides p. ThenMq+ε is homotopy equivalent to Mq−ε with a γ-cell attached.
These results generalize and formalize the 'rule' stated in the previous section. As was mentioned, the rule as stated is incorrect; these theorems correct it.
Using the two previous results and the fact that there exists a Morse function on any differentiable manifold, one can prove that any differentiable manifold is a CW complex with an n-cell for each critical point of index n. To do this, one needs the technical fact that one can arrange to have a single critical point on each critical level, which is usually proven by using gradient-like vector fields to rearrange the critical points.
Morse inequalities[edit]
Morse theory can be used to prove some strong results on the homology of manifolds. The number of critical points of index γ of f : M → R is equal to the number of γ cells in the CW structure on M obtained from "climbing"f. Using the fact that the alternating sum of the ranks of the homology groups of a topological space is equal to the alternating sum of the ranks of the chain groups from which the homology is computed, then by using the cellular chain groups (see cellular homology) it is clear that the Euler characteristic is equal to the sum
where Cγ is the number of critical points of index γ. Also by cellular homology, the rank of the nth homology group of a CW complex M is less than or equal to the number of n-cells in M. Therefore the rank of the γthhomology group,i.e., the Betti number , is less than or equal to the number of critical points of index γ of a Morse function on M. These facts can be strengthened to obtain the Morse inequalities:
In particular, for any
one has
This gives a powerful tool to study manifold topology. Suppose on a closed manifold there exists a Morse function f : M → R with precisely k critical points. In what way does the existence of the function f restricts M? The case k = 2 was studied by Reeb in 1952; Reeb sphere theorem states thatM is homeomorphic to a sphere . The case k = 3 is possible only in a small number of low dimensions, and M is homeomorphic to an Eells–Kuiper manifold.
Morse homology[edit]
Morse homology is a particularly easy way to understand the homology ofsmooth manifolds. It is defined using a generic choice of Morse function and Riemannian metric. The basic theorem is that the resulting homology is an invariant of the manifold (i.e., independent of the function and metric) and isomorphic to the singular homology of the manifold; this implies that the Morse and singular Betti numbers agree and gives an immediate proof of the Morse inequalities. An infinite dimensional analog of Morse homology is known as Floer homology.
Ed Witten developed another related approach to Morse theory in 1982 using harmonic functions.
Morse–Bott theory[edit]
The notion of a Morse function can be generalized to consider functions that have nondegenerate manifolds of critical points. A Morse–Bott function is a smooth function on a manifold whose critical set is a closed submanifold and whose Hessian is non-degenerate in the normal direction. (Equivalently, the kernel of the Hessian at a critical point equals the tangent space to the critical submanifold.) A Morse function is the special case where the critical manifolds are zero-dimensional (so the Hessian at critical points is non-degenerate in every direction, i.e., has no kernel).
The index is most naturally thought of as a pair
where i− is the dimension of the unstable manifold at a given point of the critical manifold, and i+ is i− plus the dimension of the critical manifold. If the Morse–Bott function is perturbed by a small function on the critical locus, the index of all critical points of the perturbed function on a critical manifold of the unperturbed function will lie between i− and i+).
Morse–Bott functions are useful because generic Morse functions are difficult to work with; the functions one can visualize, and with which one can easily calculate, typically have symmetries. They often lead to positive-dimensional critical manifolds. Raoul Bott used Morse–Bott theory in his original proof of the Bott periodicity theorem.
Round functions are examples of Morse–Bott functions, where the critical sets are (disjoint unions of) circles.
Morse homology can also be formulated for Morse–Bott functions; the differential in Morse–Bott homology is computed by a spectral sequence. Frederic Bourgeois sketched an approach in the course of his work on a Morse–Bott version of symplectic field theory, but this work was never published due to substantial analytic difficulties.
See also[edit]
[/ltr][/size]
[size][ltr]
Notes[edit]
References[edit]
[/ltr][/size]
From Wikipedia, the free encyclopedia
(Redirected from Morse function)
[ltr]"Morse function" redirects here. In another context, a "Morse function" can also mean an anharmonic oscillator: see Morse potential
In differential topology, Morse theory enables one to analyze thetopology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.
Before Morse, Arthur Cayley and James Clerk Maxwell had developed some of the ideas of Morse theory in the context of topography. Morse originally applied his theory to geodesics (critical points of the energyfunctional on paths). These techniques were used in Raoul Bott's proof of his periodicity theorem.
The analogue of Morse theory for complex manifolds is Picard–Lefschetz theory.
[/ltr]
[size][ltr]
Basic concepts[edit]
[/ltr][/size][size][ltr]
Consider, for purposes of illustration, a mountainous landscape M. If f is the function M→ R sending each point to its elevation, then the inverse imageof a point in R (a level set) is simply a contour line. Each connected component of a contour line is either a point, a simpleclosed curve, or a closed curve with a double point. Contour lines may also have points of higher order (triple points, etc.), but these are unstable and may be removed by a slight deformation of the landscape. Double points in contour lines occur at saddle points, or passes. Saddle points are points where the surrounding landscape curves up in one direction and down in the other.
[/ltr][/size][size][ltr]
Imagine flooding this landscape with water. Then, the region covered by water when the water reaches an elevation of a isf−1(−∞, a], or the points with elevation less than or equal to a. Consider how the topology of this region changes as the water rises. It appears, intuitively, that it does not change except when a passes the height of a critical point; that is, a point where the gradient of f is 0(that is the Jacobian matrix acting as a linear map from the tangent space at that point to the tangent space at its image under the map f does not have maximal rank). In other words, it does not change except when the water either (1) starts filling a basin, (2) covers a saddle (a mountain pass), or (3) submerges a peak.
[/ltr][/size][size][ltr]
To each of these three types of critical points – basins, passes, and peaks (also called minima, saddles, and maxima) – one associates a number called the index. Intuitively speaking, the index of a critical point b is the number of independent directions around b in which f decreases. Therefore, the indices of basins, passes, and peaks are 0, 1, and 2, respectively. Rigorously, index of a critical point is the dimension of the negative-definite submatrix of the hessian matrix calculated at that point . In case of smooth maps, the hessian matrix turns out to be a diagonal matrix
Define Ma as f−1(−∞, a]. Leaving the context of topography, one can make a similar analysis of how the topology of Ma changes as a increases whenM is a torus oriented as in the image and f is projection on a vertical axis, taking a point to its height above the plane.
[/ltr][/size]
[size][ltr]
Starting from the bottom of the torus, let p, q, r, and s be the four critical points of index 0, 1, 1, and 2, respectively. When a is less than 0, Ma is the empty set. After apasses the level of p, when 0<a<f(q), then Ma is a disk, which is homotopy equivalent to a point (a 0-cell), which has been "attached" to the empty set. Next, when a exceeds the level of q, andf(q)<a<f(r), then Ma is a cylinder, and is homotopy equivalent to a disk with a 1-cell attached (image at left). Once a passes the level ofr, and f(r)<a<f(s), then Ma is a torus with a disk removed, which is homotopy equivalent to a cylinderwith a 1-cell attached (image at right). Finally, when a is greater than the critical level of s, Ma is a torus. A torus, of course, is the same as a torus with a disk removed with a disk (a 2-cell) attached.
One therefore appears to have the following rule: the topology of Mα does not change except when α passes the height of a critical point, and when α passes the height of a critical point of index γ, a γ-cell is attached to Mα. This does not address the question of what happens when two critical points are at the same height. That situation can be resolved by a slight perturbation of f. In the case of a landscape (or a manifold embedded inEuclidean space), this perturbation might simply be tilting the landscape slightly, or rotating the coordinate system.
This rule, however, is false as stated. To see this, let M = R and let f(x) =x3. Then 0 is a critical point of f, but the topology of Mα does not change when α passes 0. In fact, the concept of index does not make sense. The problem is that the second derivative is also 0 at 0. This kind of situation is called a degenerate critical point. Note that this situation is unstable: by rotating the coordinate system under the graph, the degenerate critical point either is removed or breaks up into two non-degenerate critical points.
Formal development[edit]
For a real-valued smooth function f : M → R on a differentiable manifoldM, the points where the differential of f vanishes are called critical points off and their images under f are called critical values. If at a critical point b, the matrix of second partial derivatives (the Hessian matrix) is non-singular, then b is called a non-degenerate critical point; if the Hessian is singular then b is a degenerate critical point.
For the functions
from R to R, f has a critical point at the origin if b=0, which is non-degenerate if c≠0 (i.e. f is of the form a+cx2+...) and degenerate if c=0 (i.e.f is of the form a+dx3+...). A less trivial example of a degenerate critical point is the origin of the monkey saddle.
The index of a non-degenerate critical point b of f is the dimension of the largest subspace of the tangent space to M at b on which the Hessian is negative definite. This corresponds to the intuitive notion that the index is the number of directions in which f decreases. The degeneracy and index of a critical point are independent of the choice of the local coordinate system used, as shown by Sylvester's Law.
Morse lemma[edit]
Let b be a non-degenerate critical point of f : M → R. Then there exists achart (x1, x2, ..., xn) in a neighborhood U of b such that for all iand
throughout U. Here α is equal to the index of f at b. As a corollary of the Morse lemma, one sees that non-degenerate critical points are isolated. (Regarding an extension to the complex domain see Complex Morse Lemma. For a generalization, see Morse-Palais lemma).
Fundamental theorems[edit]
A smooth real-valued function on a manifold M is a Morse function if it has no degenerate critical points. A basic result of Morse theory says that almost all functions are Morse functions. Technically, the Morse functions form an open, dense subset of all smooth functions M → R in the C2topology. This is sometimes expressed as "a typical function is Morse" or "a generic function is Morse".
As indicated before, we are interested in the question of when the topology of Ma = f−1(−∞, a] changes as a varies. Half of the answer to this question is given by the following theorem.
Theorem. Suppose f is a smooth real-valued function on M, a < b,f−1[a, b] is compact, and there are no critical values between a and b. Then Ma is diffeomorphic to Mb, and Mb deformation retracts onto Ma.
It is also of interest to know how the topology of Ma changes when apasses a critical point. The following theorem answers that question.
Theorem. Suppose f is a smooth real-valued function on M and p is a non-degenerate critical point of f of index γ, and that f(p) = q. Supposef−1[q−ε, q+ε] is compact and contains no critical points besides p. ThenMq+ε is homotopy equivalent to Mq−ε with a γ-cell attached.
These results generalize and formalize the 'rule' stated in the previous section. As was mentioned, the rule as stated is incorrect; these theorems correct it.
Using the two previous results and the fact that there exists a Morse function on any differentiable manifold, one can prove that any differentiable manifold is a CW complex with an n-cell for each critical point of index n. To do this, one needs the technical fact that one can arrange to have a single critical point on each critical level, which is usually proven by using gradient-like vector fields to rearrange the critical points.
Morse inequalities[edit]
Morse theory can be used to prove some strong results on the homology of manifolds. The number of critical points of index γ of f : M → R is equal to the number of γ cells in the CW structure on M obtained from "climbing"f. Using the fact that the alternating sum of the ranks of the homology groups of a topological space is equal to the alternating sum of the ranks of the chain groups from which the homology is computed, then by using the cellular chain groups (see cellular homology) it is clear that the Euler characteristic is equal to the sum
where Cγ is the number of critical points of index γ. Also by cellular homology, the rank of the nth homology group of a CW complex M is less than or equal to the number of n-cells in M. Therefore the rank of the γthhomology group,i.e., the Betti number , is less than or equal to the number of critical points of index γ of a Morse function on M. These facts can be strengthened to obtain the Morse inequalities:
In particular, for any
one has
This gives a powerful tool to study manifold topology. Suppose on a closed manifold there exists a Morse function f : M → R with precisely k critical points. In what way does the existence of the function f restricts M? The case k = 2 was studied by Reeb in 1952; Reeb sphere theorem states thatM is homeomorphic to a sphere . The case k = 3 is possible only in a small number of low dimensions, and M is homeomorphic to an Eells–Kuiper manifold.
Morse homology[edit]
Morse homology is a particularly easy way to understand the homology ofsmooth manifolds. It is defined using a generic choice of Morse function and Riemannian metric. The basic theorem is that the resulting homology is an invariant of the manifold (i.e., independent of the function and metric) and isomorphic to the singular homology of the manifold; this implies that the Morse and singular Betti numbers agree and gives an immediate proof of the Morse inequalities. An infinite dimensional analog of Morse homology is known as Floer homology.
Ed Witten developed another related approach to Morse theory in 1982 using harmonic functions.
Morse–Bott theory[edit]
The notion of a Morse function can be generalized to consider functions that have nondegenerate manifolds of critical points. A Morse–Bott function is a smooth function on a manifold whose critical set is a closed submanifold and whose Hessian is non-degenerate in the normal direction. (Equivalently, the kernel of the Hessian at a critical point equals the tangent space to the critical submanifold.) A Morse function is the special case where the critical manifolds are zero-dimensional (so the Hessian at critical points is non-degenerate in every direction, i.e., has no kernel).
The index is most naturally thought of as a pair
where i− is the dimension of the unstable manifold at a given point of the critical manifold, and i+ is i− plus the dimension of the critical manifold. If the Morse–Bott function is perturbed by a small function on the critical locus, the index of all critical points of the perturbed function on a critical manifold of the unperturbed function will lie between i− and i+).
Morse–Bott functions are useful because generic Morse functions are difficult to work with; the functions one can visualize, and with which one can easily calculate, typically have symmetries. They often lead to positive-dimensional critical manifolds. Raoul Bott used Morse–Bott theory in his original proof of the Bott periodicity theorem.
Round functions are examples of Morse–Bott functions, where the critical sets are (disjoint unions of) circles.
Morse homology can also be formulated for Morse–Bott functions; the differential in Morse–Bott homology is computed by a spectral sequence. Frederic Bourgeois sketched an approach in the course of his work on a Morse–Bott version of symplectic field theory, but this work was never published due to substantial analytic difficulties.
See also[edit]
[/ltr][/size]
- Digital Morse theory
- Discrete Morse theory
- Lagrangian Grassmannian
- Lusternik–Schnirelmann category
- Morse–Smale system
- Sard's lemma
- Stratified Morse theory
[size][ltr]
Notes[edit]
References[edit]
[/ltr][/size]
- Bott, Raoul (1988). Morse Theory Indomitable. Publications Mathématiques de l'IHÉS. 68, 99–114.
- Bott, Raoul (1982). Lectures on Morse theory, old and new., Bull. Amer. Math. Soc. (N.S.) 7, no. 2, 331–358.
- Cayley, Arthur (1859). On Contour and Slope Lines. The Philosophical Magazine 18 (120), 264-268.
- Guest, Martin (2001). arXiv abstract Morse Theory in the 1990's
- Matsumoto, Yukio (2002). An Introduction to Morse Theory
- Maxwell, James Clerk (1870). On Hills and Dales. The Philosophical Magazine 40 (269), 421–427.
- Milnor, John (1963). Morse Theory. Princeton University Press. ISBN 0-691-08008-9. A classic advanced reference in mathematics and mathematical physics.
- Milnor, John (1965). Lectures on the h-Cobordism theorem - scans available here
- Morse, Marston (1934). "The Calculus of Variations in the Large",American Mathematical Society Colloquium Publication 18; New York.
- Matthias Schwarz: Morse Homology, Birkhäuser, 1993.
- Seifert, Herbert & Threlfall, William (1938). Variationsrechnung im Grossen
- Witten, Edward (1982). Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), no. 4, 661–692.
一星- 帖子数 : 3787
注册日期 : 13-08-07
回复: 范畴(论)
阿蒂亚-辛格指标定理
There exists a deep relation between the topology (i.e., the qualitative behavior)
of a manifold and the structure of analytic objects on the manifold.
数学中,]阿蒂亚-辛格指标定理断言:对于紧流形上的]椭圆偏微分算子,其解析指标(与解空间的维度相关)等于[b]拓扑指标(决定于流形的拓扑性状)。它涵摄了微分几何中许多大定理,在理论物理学中亦有应用。
此定理由迈克尔·阿蒂亚与艾沙道尔·辛格于1963年证出。
[/ltr][/size]
[size][ltr]
符号简述[编辑]
[/ltr][/size]
[size][ltr]
微分算子的符号[编辑]
设 是带 个变元 的 阶微分算子。其符号定义是以 为变元的函数,其定义是将
映至
因此符号对变元 是个 n 次齐次多项式。若此多项式满足 ,则称 是椭圆算子。
例一. 带 个变元的拉普拉斯算子其符号为 ,这是一个椭圆算子。
以上所述是 上的偏微分算子。今考虑微分流形 ,其上的 阶偏微分算子可以藉局部坐标系定义。此时其符号是 的余切丛 上的函数;对固定的 ,其符号是向量空间 上的 次齐次函数,此定义与局部座标的选取无关(偏微分算子在坐标变换下的变换较为复杂,只能以射流丛定义;然而其最高阶项的变换规律似于张量)。
进一步言之,对于向量丛之间的偏微分算子 (一样以局部坐标定义),其符号是拉回丛 的截面。若对每个 ,此符号限制为可逆映射 ,则称 为椭圆算子。
粗略来说,椭圆算子的关键特性在于它们“几乎”可逆。对于紧流形上的椭圆算子 ,存在一个椭圆伪微分算子 使得 与 都是紧算子。由此可推知 的核与余核都是有限维的。
解析指标[编辑]
既然 有伪逆,它便是 Fredholm 算子。对这类算子,可定义指标为
Index(D) = Dim Ker(D) − Dim Coker(D) = Dim Ker(D) − Dim Ker(D*)。
在微分几何的脉络下,常另称为的解析指标。
例二. 考虑流形 ,算子 ,其中 ,这是最简单的椭圆算子。若 ,则 ,反之则为零空间;其伴随算子 满足类似的性质,不难算出 的指数为零。由此例可见 与 在 变化时可能有不连续点,但其差则是个常数。
拓扑指标[编辑]
设 是 n 维紧微分流形,椭圆偏微分算子 的拓扑指标定义为
换言之,是同调类 的最高维项在 的基本同调类上的取值。在此:
[/ltr][/size]
[size][ltr]
指标定理[编辑]
符号同前。椭圆算子 的解析指标在微小的扰动下不变,因此产生了一个自然的问题,称为指标问题:可否以流形 及向量丛 的拓扑不变量表示解析指标?
阿蒂亚-辛格指标定理给出的解答是:
D 的解析指标等于拓扑指标
解析指标通常难以计算,而拓扑指标尽管定义复杂,却往往有直截了当的几何意义。借由选取适当的椭圆算子 ,指标定理可以给出丰富的几何信息。
例子[编辑]
欧拉示性数[编辑]
设 为有定向的紧流形。任选一黎曼度量,取 ,并取 ,定义算子 。此时的拓扑指标等于 的欧拉示性数,解析指标等于 。
希策布鲁赫-黎曼-罗赫定理[编辑]
设 为紧复流形, 为其上的复向量丛。定义
则解析指标等于
而拓扑指标等于
index(D) = ch(V)Td(X)[X],
 亏格与 Rochlin 定理[编辑]
流形的Â亏格是个有理数。对于自旋流形,这个值总是整数,若 ,则它还是个偶数。这个定理可以由指标定理导出,方法是考虑适当的狄拉克算子;当 时,此算子的核与余核带有四元数环上的向量空间结构,其复维度必为偶数,因此解析指标也必然是偶数。
历史渊源[编辑]
盖尔芳特首先注意到解析指标的同伦不变性,并在1959年提出了椭圆算子的指标问题,希望以流形的拓扑不变量描述解析指标。黎曼-罗赫定理是最早知道的特例;另一方面,波莱尔与希策布鲁赫早先证明了自旋流形的Â亏格的整性,并猜想这个性质可以由某个狄拉克算子的指标诠释。这个问题也由阿蒂亚与辛格在1961年联手解决。
阿蒂亚与辛格在1963年宣布他们的指标定理,但一直没有正式发表,只出现在 Palais 在1965年出版的书上。他们在1968年发表了第二个证明,用K理论取代了初版证明中的配边论手法。
阿蒂亚、博特与 Patodi 在 1973 年以热传导方程的手法给出另一个证明。格茨勒基于爱德华·维腾(1982)及 Alvarez-Gaume(1983)的想法,给出了局部狄拉克算子的局部指标定理的简短证明,这涵摄了实际应用中的大多数例子。
证明手法[编辑]
伪微分算子[编辑]
主条目:伪微分算子
伪微分算子的想法可以从欧氏空间上的常系数偏微分算子解释,在此情况下,这些算子不外是多项式函数的傅立叶变换;如果我们容许更一般的函数,其傅立叶变换就构成了伪微分算子。对于一般的流形,可以透过局部坐标系定义伪微分算子,只是手续稍微繁琐一些。
指标定理的许多证明中都利用伪微分算子,而非一般的微分算子,因为前者的理论更富弹性。举例来说,椭圆算子的伪逆不是微分算子,却仍是伪微分算子;另一方面,群 的元素对应到椭圆伪微分算子的符号。
对伪微分算子可以定义阶数,这个数可以是任意实数,甚至是负无穷大;此外也能定义其符号。椭圆伪微分算子定义为些对长度够长的余切向量为可逆的伪微分算子。指标定理的多数版本皆可推广到椭圆伪微分算子的情形。
配边[编辑]
指标定理的首个证明奠基于希策布鲁赫-黎曼-罗赫定理,并运用到配边理论与伪微分算子。想法简述如下。
考虑由资料 构成的环,其中 是紧定向微分流形, 是向量丛,其加法与乘法分别由不交并与积导出;我们考虑此环对关系 的商环。这个构造类似于配边环,不过此时我们还虑及流形上的向量丛。解析指标与拓扑指标皆可诠释为从此环映至整数环的同态。托姆的配边理论给出了这个环的一组生成元,我们可以对这些较简单的例子验证指标定理,从而导出一般的情形。
K 理论[编辑]
阿蒂亚与辛格正式发表的第一个证明采用了K理论。设 为紧流形, 为闭浸入,他们对椭圆算子定义了一个推前运算 ,并证明 保持指标。我们一方面可取 为一个包括 的高维球面;另一方面,仍取 为前述球面,而 为其内一点。由于 保持指标,而拓扑指标也具备相容的运算,两相比较后可将指标定理化约到一个点的情形,此时极易证明。
热传导方程[编辑]
阿蒂亚、博特 与 Patodi 在1973年给出了热传导方程手法的证明。格茨勒、伯利纳与弗尼在2002年给出一个精神相近的简化证明,其中利用了超对称的想法。
设 为偏微分算子, 为其伴随算子,则 、 是自伴算子,并具有相同的非零特征值(记入重数),但是它们核空间不一定有相同维度。 的指标写作
在此 可任取。
上式右侧是两个热核的差,它们在 时有渐近表示式,它乍看复杂,但不变量理论表明其中有许多相销项,借此可明确写下领导项,由此可证出指标定理。这些相销现象稍后也得到超对称理论的诠释。
推广[编辑]
[/ltr][/size]
[size][ltr]
0 → E0 → E1 →E2 → ... → Em →0
其中的每个箭头都是伪微分算子,其符号构成一个正合复形。当只有两项非零时,前述条件等价于其间的算子是椭圆的,因此椭圆算子是椭圆复形的特例。反过来说,给定一个椭圆复形,分别考虑其奇次项与偶次项的直和,其间的映射由原复形的映射及伴随映射给出,如此则可得到椭圆算子。
[/ltr][/size]
[size][ltr]
阿贝尔奖公告上的引语[编辑]
当阿蒂亚与辛格在2004年获得阿贝尔奖时,公告上是这么形容阿蒂亚-辛格指标定理的:
[size=36]“[/size]
科学家以随时空改变的力与测量量描述世界。自然律以这些量的变化率表示,称为微分方程。这些方程可以有个“指标”,这是方程的解数减去对所求值的限制数目。阿蒂亚-辛格指标以空间的几何性质描述这个量。
艾雪著名的诡异作品《升降》解释了一个简单的例子。图中的人们一直在上坡,却仍绕行着城堡的天井。指标定理可以告诉它们:这是办不到的。
[size=36]”[/size]
参考资料[编辑]
书籍[编辑]
[/ltr][/size]
[size][ltr]
论文[编辑]
[/ltr][/size]
[size][ltr]
外部链接[编辑]
[/ltr][/size]
There exists a deep relation between the topology (i.e., the qualitative behavior)
of a manifold and the structure of analytic objects on the manifold.
数学中,]阿蒂亚-辛格指标定理断言:对于紧流形上的]椭圆偏微分算子,其解析指标(与解空间的维度相关)等于[b]拓扑指标(决定于流形的拓扑性状)。它涵摄了微分几何中许多大定理,在理论物理学中亦有应用。
此定理由迈克尔·阿蒂亚与艾沙道尔·辛格于1963年证出。
[/ltr][/size]
[size][ltr]
符号简述[编辑]
[/ltr][/size]
- X 是紧微分流形。
- E 与 F 是 X 上的向量丛。
- 是向量丛之间的椭圆偏微分算子。
[size][ltr]
微分算子的符号[编辑]
设 是带 个变元 的 阶微分算子。其符号定义是以 为变元的函数,其定义是将
映至
因此符号对变元 是个 n 次齐次多项式。若此多项式满足 ,则称 是椭圆算子。
例一. 带 个变元的拉普拉斯算子其符号为 ,这是一个椭圆算子。
以上所述是 上的偏微分算子。今考虑微分流形 ,其上的 阶偏微分算子可以藉局部坐标系定义。此时其符号是 的余切丛 上的函数;对固定的 ,其符号是向量空间 上的 次齐次函数,此定义与局部座标的选取无关(偏微分算子在坐标变换下的变换较为复杂,只能以射流丛定义;然而其最高阶项的变换规律似于张量)。
进一步言之,对于向量丛之间的偏微分算子 (一样以局部坐标定义),其符号是拉回丛 的截面。若对每个 ,此符号限制为可逆映射 ,则称 为椭圆算子。
粗略来说,椭圆算子的关键特性在于它们“几乎”可逆。对于紧流形上的椭圆算子 ,存在一个椭圆伪微分算子 使得 与 都是紧算子。由此可推知 的核与余核都是有限维的。
解析指标[编辑]
既然 有伪逆,它便是 Fredholm 算子。对这类算子,可定义指标为
Index(D) = Dim Ker(D) − Dim Coker(D) = Dim Ker(D) − Dim Ker(D*)。
在微分几何的脉络下,常另称为的解析指标。
例二. 考虑流形 ,算子 ,其中 ,这是最简单的椭圆算子。若 ,则 ,反之则为零空间;其伴随算子 满足类似的性质,不难算出 的指数为零。由此例可见 与 在 变化时可能有不连续点,但其差则是个常数。
拓扑指标[编辑]
设 是 n 维紧微分流形,椭圆偏微分算子 的拓扑指标定义为
换言之,是同调类 的最高维项在 的基本同调类上的取值。在此:
[/ltr][/size]
[size][ltr]
指标定理[编辑]
符号同前。椭圆算子 的解析指标在微小的扰动下不变,因此产生了一个自然的问题,称为指标问题:可否以流形 及向量丛 的拓扑不变量表示解析指标?
阿蒂亚-辛格指标定理给出的解答是:
D 的解析指标等于拓扑指标
解析指标通常难以计算,而拓扑指标尽管定义复杂,却往往有直截了当的几何意义。借由选取适当的椭圆算子 ,指标定理可以给出丰富的几何信息。
例子[编辑]
欧拉示性数[编辑]
设 为有定向的紧流形。任选一黎曼度量,取 ,并取 ,定义算子 。此时的拓扑指标等于 的欧拉示性数,解析指标等于 。
希策布鲁赫-黎曼-罗赫定理[编辑]
设 为紧复流形, 为其上的复向量丛。定义
则解析指标等于
而拓扑指标等于
index(D) = ch(V)Td(X)[X],
 亏格与 Rochlin 定理[编辑]
流形的Â亏格是个有理数。对于自旋流形,这个值总是整数,若 ,则它还是个偶数。这个定理可以由指标定理导出,方法是考虑适当的狄拉克算子;当 时,此算子的核与余核带有四元数环上的向量空间结构,其复维度必为偶数,因此解析指标也必然是偶数。
历史渊源[编辑]
盖尔芳特首先注意到解析指标的同伦不变性,并在1959年提出了椭圆算子的指标问题,希望以流形的拓扑不变量描述解析指标。黎曼-罗赫定理是最早知道的特例;另一方面,波莱尔与希策布鲁赫早先证明了自旋流形的Â亏格的整性,并猜想这个性质可以由某个狄拉克算子的指标诠释。这个问题也由阿蒂亚与辛格在1961年联手解决。
阿蒂亚与辛格在1963年宣布他们的指标定理,但一直没有正式发表,只出现在 Palais 在1965年出版的书上。他们在1968年发表了第二个证明,用K理论取代了初版证明中的配边论手法。
阿蒂亚、博特与 Patodi 在 1973 年以热传导方程的手法给出另一个证明。格茨勒基于爱德华·维腾(1982)及 Alvarez-Gaume(1983)的想法,给出了局部狄拉克算子的局部指标定理的简短证明,这涵摄了实际应用中的大多数例子。
证明手法[编辑]
伪微分算子[编辑]
主条目:伪微分算子
伪微分算子的想法可以从欧氏空间上的常系数偏微分算子解释,在此情况下,这些算子不外是多项式函数的傅立叶变换;如果我们容许更一般的函数,其傅立叶变换就构成了伪微分算子。对于一般的流形,可以透过局部坐标系定义伪微分算子,只是手续稍微繁琐一些。
指标定理的许多证明中都利用伪微分算子,而非一般的微分算子,因为前者的理论更富弹性。举例来说,椭圆算子的伪逆不是微分算子,却仍是伪微分算子;另一方面,群 的元素对应到椭圆伪微分算子的符号。
对伪微分算子可以定义阶数,这个数可以是任意实数,甚至是负无穷大;此外也能定义其符号。椭圆伪微分算子定义为些对长度够长的余切向量为可逆的伪微分算子。指标定理的多数版本皆可推广到椭圆伪微分算子的情形。
配边[编辑]
指标定理的首个证明奠基于希策布鲁赫-黎曼-罗赫定理,并运用到配边理论与伪微分算子。想法简述如下。
考虑由资料 构成的环,其中 是紧定向微分流形, 是向量丛,其加法与乘法分别由不交并与积导出;我们考虑此环对关系 的商环。这个构造类似于配边环,不过此时我们还虑及流形上的向量丛。解析指标与拓扑指标皆可诠释为从此环映至整数环的同态。托姆的配边理论给出了这个环的一组生成元,我们可以对这些较简单的例子验证指标定理,从而导出一般的情形。
K 理论[编辑]
阿蒂亚与辛格正式发表的第一个证明采用了K理论。设 为紧流形, 为闭浸入,他们对椭圆算子定义了一个推前运算 ,并证明 保持指标。我们一方面可取 为一个包括 的高维球面;另一方面,仍取 为前述球面,而 为其内一点。由于 保持指标,而拓扑指标也具备相容的运算,两相比较后可将指标定理化约到一个点的情形,此时极易证明。
热传导方程[编辑]
阿蒂亚、博特 与 Patodi 在1973年给出了热传导方程手法的证明。格茨勒、伯利纳与弗尼在2002年给出一个精神相近的简化证明,其中利用了超对称的想法。
设 为偏微分算子, 为其伴随算子,则 、 是自伴算子,并具有相同的非零特征值(记入重数),但是它们核空间不一定有相同维度。 的指标写作
在此 可任取。
上式右侧是两个热核的差,它们在 时有渐近表示式,它乍看复杂,但不变量理论表明其中有许多相销项,借此可明确写下领导项,由此可证出指标定理。这些相销现象稍后也得到超对称理论的诠释。
推广[编辑]
[/ltr][/size]
[size][ltr]
0 → E0 → E1 →E2 → ... → Em →0
其中的每个箭头都是伪微分算子,其符号构成一个正合复形。当只有两项非零时,前述条件等价于其间的算子是椭圆的,因此椭圆算子是椭圆复形的特例。反过来说,给定一个椭圆复形,分别考虑其奇次项与偶次项的直和,其间的映射由原复形的映射及伴随映射给出,如此则可得到椭圆算子。
[/ltr][/size]
- 带边界的流形。
- 考虑一族以流形 为参数空间而变化椭圆算子,相应的解析指数可定义为 的元素。
- 设李群 作用在紧流形 上,并与所论的椭圆算子交换,则我们可以用等变K理论替代一般的K理论,得到的结果称为等变指标定里。
- L2 指标定理。
[size][ltr]
阿贝尔奖公告上的引语[编辑]
当阿蒂亚与辛格在2004年获得阿贝尔奖时,公告上是这么形容阿蒂亚-辛格指标定理的:
[size=36]“[/size]
科学家以随时空改变的力与测量量描述世界。自然律以这些量的变化率表示,称为微分方程。这些方程可以有个“指标”,这是方程的解数减去对所求值的限制数目。阿蒂亚-辛格指标以空间的几何性质描述这个量。
艾雪著名的诡异作品《升降》解释了一个简单的例子。图中的人们一直在上坡,却仍绕行着城堡的天井。指标定理可以告诉它们:这是办不到的。
[size=36]”[/size]
参考资料[编辑]
书籍[编辑]
[/ltr][/size]
- Atiyah, Michael, Collected works. Vol. 3. Index theory: 1., Oxford Science Publications, New York: The Clarendon Press, Oxford University Press. 1988a, ISBN 0-19-853277-6
- Atiyah, Michael, Collected works. Vol. 4. Index theory: 2., Oxford Science Publications, New York: The Clarendon Press, Oxford University Press. 1988b, ISBN 0-19-853278-4
- Berline, Nicole; Getzler, Ezra; Vergne, Michèle, Heat Kernels and Dirac Operators. 2004, ISBN 3540200622 利用热传导方程与超对称手法证明狄拉克算子的指标定理。
- Gilkey, Peter B., Invariance Theory, the Heat Equation, and the Atiyah–Singer Theorem. 1994, ISBN 0849378745 采用热传导方程手法的课本,可自由下载。
- Melrose, Richard B., The Atiyah-Patodi-Singer Index Theorem. 1993,ISBN 1568810024 可自由下载。
- Palais, Richard S., Seminar on the Atiyah-Singer Index Theorem, Annals of Mathematics Studies, 57. 1965, ISBN 0691080313 描述了指标定理的原始证明。
- Shanahan, P., The Atiyah-Singer index theorem: an introduction, Lecture Notes in Mathematics, 638, Springer. 1978, ISBN 0387086609
[size][ltr]
论文[编辑]
[/ltr][/size]
- Atiyah, M. F., Elliptic operators, discrete groups and von Neumann algebras, Colloque "Analyse et Topologie" en l'Honneur de Henri Cartan (Orsay, 1974), Asterisque, 32-33, Soc. Math. France, Paris. 1976: 43-72
- Atiyah, Michael F.; Singer, Isadore M., The Index of Elliptic Operators on Compact Manifolds, Bull. Amer. Math. Soc.. 1963, 69: 322-433
- Atiyah, Michael F.; Singer, Isadore M., The Index of Elliptic Operators I, Ann. Math.. 1968a, 87: 484-530
- Atiyah, M. F.; Segal, G. B., The Index of Elliptic Operators: II, The Annals of Mathematics 2nd Ser.. 1968, 87 (3): 531-545
- Atiyah, Michael F.; Singer, Isadore M., The Index of Elliptic Operators III., The Annals of Mathematics 2nd Ser.. 1968b, 87 (3): 546-604
- Atiyah, Michael F.; Singer, Isadore M., The Index of Elliptic Operators IV., The Annals of Mathematics 2nd Ser.. 1971, 93 (1): 119-138
- Atiyah, Michael F.; Singer, Isadore M., The Index of Elliptic Operators V., The Annals of Mathematics 2nd Ser.. 1971, 93 (1): 139-149.
- Atiyah, M. F.; Bott, R., A Lefschetz Fixed Point Formula for Elliptic Differential Operators., Bull. Am. Math. Soc.. 1966, 72: 245-50.
- Atiyah, M. F.; Bott, R., A Lefschetz Fixed Point Formula for Elliptic Complexes: I, The Annals of Mathematics 2nd Ser.. 1967, 86 (2): 374-407 and Atiyah, M. F.; Bott, R., A Lefschetz Fixed Point Formula for Elliptic Complexes: II. Applications., The Annals of Mathematics 2nd Ser.. 1968, 88 (3): 451-491
- Atiyah, M.; Bott, R.; Patodi, V. K., On the heat equation and the index theorem, Invent. Math.. 1973, 19: 279-330,doi:10.1007/BF01425417Errata, Invent. Math.. 1975, 28: 277-280,doi:10.1007/BF01425562
- Atiyah, Michael; Schmid, Wilfried, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math.. 1977, 42: 1-62, doi:10.1007/BF01389783, Erratum:, Invent. Math.. 1979, 54 (2): 189-192, doi:10.1007/BF01408936
- Bismut, Jean-Michel, The Atiyah–Singer Theorems: A Probabilistic Approach. I. The index theorem., J. Funct. Analysis. 1984, 57: 56-99Bismut 用机率论的手法证明指标定理。
- Gel'fand, I. M., On elliptic equations, Russ. Math.Surv.. 1960, 15 (3): 113-123 重印于他的全集第一卷, p. 65-75, ISBN 0-387-13619-3. 在第120页,盖尔芳特提示了椭圆算子的指标可以用拓扑量表示。
- Getzler, E., Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem, Commun. Math. Phys.. 1983, 92: 163–178
- Getzler, E., A short proof of the local Atiyah–Singer index theorem, Topology. 1988, 25: 111–117, doi:10.1016/0040-9383(86)90008-X
- Witten, E., Supersymmetry and Morse theory, J. Diff. Geom.. 1982, 17: 661–692
[size][ltr]
外部链接[编辑]
[/ltr][/size]
- Rafe Mazzeo: The Atiyah-Singer Index Theorem: What it is and why you should care. PDF 格式.
- Raussen, Skau, Interview with Atiyah, Singer, Notices AMS 2005.
- R. R. Seeley and other, Recollections from the early days of index theory and pseudo-differential operators
- M. I. Voitsekhovskii, M.A. Shubin, Index formulas//Hazewinkel, Michiel,数学百科全书, 克鲁维尔学术出版社. 2001, ISBN 978-1556080104
- A. J. Wassermann, Lecture Notes on the Atiyah-Singer Index Theorem
一星- 帖子数 : 3787
注册日期 : 13-08-07
您在这个论坛的权限:
您不能在这个论坛回复主题